Wireless Networks

, Volume 22, Issue 1, pp 11–31 | Cite as

Practical large-scale coordinated scheduling in LTE-Advanced networks

  • Giovanni Nardini
  • Giovanni Stea
  • Antonio Virdis
  • Dario Sabella
  • Marco Caretti
Article

Abstract

In LTE-Advanced, the same spectrum can be re-used in neighboring cells, hence coordinated scheduling is employed to improve the overall network performance (cell throughput, fairness, and energy efficiency) by reducing inter-cell interference. In this paper, we advocate that large-scale coordination can be obtained through a layered solution: a cluster of few (i.e., three) cells is coordinated at the first level, and clusters of coordinated cells are then coordinated at a larger scale (e.g., tens of cells). We model both small-scale coordination and large-scale coordination as optimization problems, show that solving them at optimality is prohibitive, and propose two efficient heuristics that achieve good results, and yet are simple enough to be run at every transmission time interval. Detailed packet-level simulations show that our layered approach outperforms the existing ones, both static and dynamic.

Keywords

LTE-A Coordinated scheduling CoMP Optimization 

Notes

Acknowledgments

The subject matter of this paper includes description of results of a joint research project carried out by Telecom Italia and the University of Pisa. Telecom Italia reserves all proprietary rights in any process, procedure, algorithm, article of manufacture, or other result of said project herein described. Authors would like to thank Prof. Antonio Frangioni and Dr. Laura Galli of the University of Pisa for their useful suggestions.

References

  1. 1.
    3GPP—TS 36.300. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2.Google Scholar
  2. 2.
    3GPP—TR 36.819 v11.2.0. (2013). Coordinated multi-point operation for LTE physical layer aspects (Release 11).Google Scholar
  3. 3.
    Lee, D., Seo, H., Clerckx, B., Hardouin, E., Mazzarese, D., Nagata, S., et al. (2012). Coordinated multipoint transmission and reception in LTE-advanced: Deployment scenarios and operational challenges, IEEE Communications Magazine, pp. 148–155Google Scholar
  4. 4.
    China Mobile Research Institute. (2011). C-RAN - The Road Towards Green RAN, v. 2.5 white paper.Google Scholar
  5. 5.
    3GPP—TS 36.211 v12.4.0. (2014). Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation.Google Scholar
  6. 6.
    3GPP—TS 36.213 v12.4.0. (2014). Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures.Google Scholar
  7. 7.
    Pateromichelakis, E., Shariat, M., ul Quddus, A., & Tafazolli, R. (2012). On the evolution of multi-cell scheduling in 3GPP LTE/LTE-A, IEEE Communications Surveys and Tutorials.Google Scholar
  8. 8.
    Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: a downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9, 1414–1425.CrossRefGoogle Scholar
  9. 9.
    Virdis, A., Stea, G., & Nardini, G. (2014). SimuLTE: A modular system-level simulator for LTE/LTE-A networks based on OMNeT++, proc. of SimulTech 2014, Vienna, AT, 28–30 August 2014Google Scholar
  10. 10.
    SimuLTE webpage. http://www.simulte.com
  11. 11.
  12. 12.
    Sternad, M., Ottosson, T., Ahlen, A., & Svensson, A. (2003). Attaining both coverage and high spectral efficiency with adaptive OFDM downlinks, Proc. of VTC 2003-Fall, pp. 2486–2490 6–9 October 2003.Google Scholar
  13. 13.
    3GPP. (2005). Soft frequency reuse scheme for UTRAN LTE, 3rd generation partnership project (3GPP), R1-050507.Google Scholar
  14. 14.
    Fang, L., & Zhang, X. (2008). Optimal fractional frequency reuse in OFDMA based wireless networks, Proc. WiCOM ‘08, pp. 1–4, 12–14 October 2008.Google Scholar
  15. 15.
    Ali, S. H., & Leung, V. C. M. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRefGoogle Scholar
  16. 16.
    Hoon, K., Youngnam, H., & Jayong, K. (2004). Optimal subchannel allocation scheme in multicell OFDMA systems, Proc. of VTC Spring’04 pp.1821–1825 Vol.3, 17–19 May 2004.Google Scholar
  17. 17.
    Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.CrossRefGoogle Scholar
  18. 18.
    Koutsimanis, C., & Fodor, G., (2008). A dynamic resource allocation scheme for guaranteed bit rate services in OFDMA networks, Proc. ICC ‘08, pp. 2524–2530, 19–23 May 2008.Google Scholar
  19. 19.
    Arslan, M. Y., Yoon, J., Sundaresan, K., Krishnamurthy, S. V., & Banerjee, S. (2013). A resource management system for interference mitigation in enterprise OFDMA femtocells. IEEE/ACM Transactions on Networking, 21(5), 1447–1460.CrossRefGoogle Scholar
  20. 20.
    Khun, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistic Quarterly, 2, 83–97.CrossRefGoogle Scholar
  21. 21.
    3GPP TR 36.814 v9.0.0. (2010). Further advancements for E-UTRA physical layer aspects (Release 9).Google Scholar
  22. 22.
  23. 23.
    Bacioccola, A., Cicconetti, C., & Stea, G., (2007). User level performance evaluation of VoIP using ns-2, Proc. NSTOOLS’07, Nantes, France, 22 October 2007.Google Scholar
  24. 24.
    Nardini, G., Stea, G., Virdis, A., Caretti, M., & Sabella, D., (2014). Improving network performance via optimization-based centralized coordination of LTE-A cells, Proc. of CLEEN 2014, Istanbul, TK, 6 April 2014Google Scholar
  25. 25.
    Nardini, G., Stea, G., Virdis, A., Sabella, D., & Caretti, M. (2014). Effective dynamic coordinated scheduling in LTE-Advanced networks, Proc. of EuCNC 2014, Bologna, Italy, 23–26 June 2014Google Scholar
  26. 26.
    INET framework for OMNeT++: http://inet.omnetpp.org/ (Accessed July 2014)
  27. 27.
    3GPP TR 36.420 v11.0.0. (2012). X2 general aspects and principles (Release 11).Google Scholar
  28. 28.
    Accongiagioco, G., Andreozzi, M. M., Migliorini, D., & Stea, G. (2013). Throughput-optimal resource allocation in LTE-advanced with distributed antennas. Computer Networks, 57(2013), 3997–4009.CrossRefGoogle Scholar
  29. 29.
    Stea, G., & Virdis, A. (2014). A comprehensive simulation analysis of LTE discontinuous reception (DRX). Computer Networks, 73(2014), 22–40. doi: 10.1016/j.comnet.2014.07.014.CrossRefGoogle Scholar
  30. 30.
    EARTH EU project website, https://www.ict-earth.eu/
  31. 31.
    Dahlman, E., Parkvall, S., & Skold, J. (2014). 4G LTE/LTE-Advanced for Mobile Broadband, 2nd ed. Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giovanni Nardini
    • 1
  • Giovanni Stea
    • 1
  • Antonio Virdis
    • 1
  • Dario Sabella
    • 2
  • Marco Caretti
    • 2
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversity of PisaPisaItaly
  2. 2.Telecom ItaliaTurinItaly

Personalised recommendations