Advertisement

Wireless Networks

, Volume 21, Issue 3, pp 963–980 | Cite as

Sleeping mobile AP: a novel energy efficient Wifi tethering scheme

  • Kyoung-Hak Jung
  • Jae-Pil Jeong
  • Young-Joo Suh
Article

Abstract

Wifi tethering enables Wifi-only devices to access the Internet by sharing the WWAN (e.g., 3G and LTE) connection of a smartphone where there is no available Wifi access point. However, the current tethering schemes have a limitation as they consume a significant portion of the battery power for providing Wifi clients with the Internet connection. In this paper, we propose a new tethering scheme that reduces the energy consumption of a mobile AP (MAP) without substantial throughput and delay degradation. To improve energy efficiency, the proposed scheme adaptively adjusts the sleep and wake-up periods based on the bandwidth asymmetric feature of the MAP. Further, it provides a longer idle time enough to put the clients into a sleep mode by combining idle periods between subsequent packets, and conserves their energy as well. Our evaluation based on the prototype implementation on commercial smartphones shows that the proposed scheme reduces the energy consumption of the MAP and the client smartphones by up to 56.0 and 8.3 %, respectively.

Keywords

Energy conservation PSM Wifi tethering Mobile AP Smartphones 

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2065379).

References

  1. 1.
    Chetan Sharma Consulting. http://www.chetansharma.com/.
  2. 2.
    Yetim, O. B., & Martonosi, M. (2012). Adaptive usage of cellular and WiFi bandwidth: An optimal scheduling formulation. In CHANTS, 2012.Google Scholar
  3. 3.
    Rahmati, A., & Zhong, L. (2007). Context-for-wireless: Context-sensitive energy-efficient wireless data transfer. In ACM MobiSys 2007.Google Scholar
  4. 4.
  5. 5.
    Windows Phone. www.windowsphone.com/.
  6. 6.
    Android Phone. http://www.android.com/.
  7. 7.
    Han, H., Liu, Y, Shen, G., Zhang, Y., & Li, Q. (2012). DozyAP: Power-efficient Wi-Fi tethering. In ACM MobiSys, 2012.Google Scholar
  8. 8.
  9. 9.
    IEEE 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Standard, IEEE, Aug. 1999.Google Scholar
  10. 10.
    Namboodiri, V., & Gao, L. (2010). Energy-efficient VoIP over wireless LANs. IEEE TMC, 9(4), 566–581.Google Scholar
  11. 11.
    Bonfiglio, D., Mellia, M. Meo, M., Rossi, D., & Tofanelli, P. (2007). Revealing Skype traffic: When randomness plays with you. In ACM SIGCOMM, 2007.Google Scholar
  12. 12.
    Wang, X., Chen, S., & Jajodia, S. (2005). Tracking anonymous peer-to-peer VoIP calls on the Internet. In ACM CCS, 2005.Google Scholar
  13. 13.
    Li, B., Ma, M., & Jin, Z. (2010). A VoIP traffic identification scheme based on host and flow behavior analysis. Journal of Network and Systems Management, 19(1), 111–129.Google Scholar
  14. 14.
    Bianchi, G. (2010). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE JSAC, 18(3), 535–547.Google Scholar
  15. 15.
    Rozner, E., Navda, V., Ramjee, R., & Rayanchu, S. (2010). NAPman: Network-assisted power management for WiFi Devices. In ACM MobySys, 2010.Google Scholar
  16. 16.
    Yang, S.-R., & Lin, Y.-B. (2005). Modeling UMTS discontinuous reception mechanism. IEEE TWC, 4(1), 312–319.Google Scholar
  17. 17.
    Daigle, J. N. (1992). Queueing theory for telecommunications. Reading, MA: Addison-Wesley.Google Scholar
  18. 18.
    Takagi, H. (1991). Queueing analysis: Vol. 1, vacation and priority systems. North Holland, Amsterdam.Google Scholar
  19. 19.
    Heidemann, D. (1994). Queue length and delay distributions at traffic signals. Transportation Research Part B, 28(5), 377–389.Google Scholar
  20. 20.
    Broadcom, BCM4330. http://www.broadcom.com/.
  21. 21.
  22. 22.
    Shepard, C., Rahmati, A., Tossell, C., Zhong, L., & Kortum, P. (2010). LiveLab: measuring wireless networks and smartphone users in the field. In ACM SIGMETRICS performance evaluation review, December 2010.Google Scholar
  23. 23.
    Tan, E., Guo, L., Chen, S., & Zhang, X. (2007). PSM-throttling: Minimizing energy consumption for bulk data communications in WLANs. In ICNP, 2007.Google Scholar
  24. 24.
    Bertozzi, D., Benini, L., & Ricco, B. (2002). Power aware network interface management for streaming multimedia. In IEEE WCNC, 2002.Google Scholar
  25. 25.
    Ding, N., Pathak, A., Koutsonikolas, D., Shepard, C., Hu, Y. C., & Zhong, L. (2012). Realizing the full potential of PSM using proxying. In IEEE Infocom, 2012.Google Scholar
  26. 26.
    Armstrong, O. T, Amza, C., & deLara, E. (2006). Efficient and transparent dynamic content updates for mobile clients. In ACM MobiSys, 2006.Google Scholar
  27. 27.
    Gupta, A., & Mohapatra, P. (2007). Energy consumption and conservation in WiFi based phones: A measurement-based study. In IEEE SECON, 2007.Google Scholar
  28. 28.
    Xie, Y., Luo, X., & Chang, R. K. C. (2009). Centralized PSM: An AP-centric power saving mode for 802.11 infrastructure networks. In SARNOFF, 2009.Google Scholar
  29. 29.
    Edmund, M., Nightingale, E., & Flinn, J. (2003). Self-tuning wireless network power management. In ACM MobiCom, 2003.Google Scholar
  30. 30.
    Heand Y., & Yuan, R. (2009). A novel scheduled power saving mechanism for 802.11 Wireless LANs. In IEEE TMC, 2009.Google Scholar
  31. 31.
    Manweiler, J., & Choudhury, R. R. (2011). Avoiding the rush hours: WiFi energy management via traffic isolation. In ACM MobySys, 2011.Google Scholar
  32. 32.
    Krashinsky, R., & Balakrishnan, H. (2002). Miniminzing energy for wireless web access using bounded slowdown. In ACM MobiCom, 2002.Google Scholar
  33. 33.
    Qiao, D., & Shin, K. (2005). Smart power-saving mode for IEEE 802.11 wireless LANs. In IEEE Infocom, 2005.Google Scholar
  34. 34.
    Pyles, A. J., Ren, Z., Zhou, G., & Liu, X. (2011). SiFi: Exploiting VoIP silence for WiFi energy savings in smart phones. In UbiComp, 2011.Google Scholar
  35. 35.
    Liu J., & Zhong, L. (2008). Micro power management of active 802.11 interfaces. In ACM MobiSys, 2008.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.PohangKorea

Personalised recommendations