Wireless Networks

, Volume 21, Issue 1, pp 329–345 | Cite as

A distributed clustering scheme with self nomination: proposal and application to critical monitoring

  • Francesco Chiti
  • Romano Fantacci
  • Riccardo Mastandrea
  • Giovanni Rigazzi
  • Álvaro Suárez Sarmiento
  • Elsa María Macías López


Clustering is a well known methodology to optimize the use of the resources, to lower the congestion and to improve the reliability in self-organized networks as the wireless sensor networks. This paper deals with the proposal of a novel clustering approach based on a low complexity distributed cluster head election based on a two-stage process. In particular, a suitable objective function is introduced in order to take into account the number of 1-hop neighbours (i.e., node degree) and the residual node energy. It is shown in the paper that the proposed protocol achieves remarkable performance improvements with respect to different alternatives, especially in the case of unpredictable scenarios. Moreover, the proposed protocol exhibits self-organize capabilities that are of special interest for critical monitoring applications, in particular when the effect of nodes mobility is significant.


Network survivability Distributed clustering protocols Performance evaluation 


  1. 1.
    Gerla, M., & Tsai, J. T.-C. (1995). Multicluster, mobile, multimedia radio network. Wireless Networks, 1(3), 255–265.CrossRefGoogle Scholar
  2. 2.
    Chen, G., & Stojmenovic, I. (1999). Clustering and routing in mobile wireless networks. Technical report, SITE, University of Ottawa.Google Scholar
  3. 3.
    Moghaddam, N. M., Zahmati, A. S., & Abolhassani, B. (2007). Lifetime enhancement in WSNs using balanced sensor allocation to cluster heads. In IEEE international conference on signal processing and communications, Nov. 2007. ICSPC 2007 (pp. 101–104).Google Scholar
  4. 4.
    Sebestyen, G., & Edie, J. (1966). An algorithm for non-parametric pattern recognition. In IEEE transactions on electronic computers, Dec. 1966 (Vol. EC-15. No. 6, pp. 908–915).Google Scholar
  5. 5.
    Virrankoski, R., & Savvidees, A. (2005). TASC: Topology adaptive spatial clustering for sensor networks. In IEEE international conference on mobile adhoc and sensor systems conference, Nov. 2005 (pp. 10–614).Google Scholar
  6. 6.
    Chatterjee, M., Das, S. K., & Turgut, D. (2002). WCA: A weighted clustering algorithm for mobile ad hoc networks. In Cluster computing (Vol. 5, No. 2, pp. 192–204). Hingham, MA, USA: Kluwer Academic Publishers.Google Scholar
  7. 7.
    Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences, Jan. 2000 (Vol. 2, pp. 1–10).Google Scholar
  8. 8.
    Xu, K., Hong, X., & Gerla, M. (2002). An ad hoc network with mobile backbones. In IEEE international conference on communications, ICC 2002 (Vol. 5, pp. 3138–3143).Google Scholar
  9. 9.
    Abdulsalam, H. M., & Kamel, L. K. (2010). W-LEACH: Weighted low energy adaptive clustering hierarchy aggregation algorithm for data streams in wireless sensor networks. In IEEE international conference on data mining workshops (ICDMW) (pp. 1–8).Google Scholar
  10. 10.
    Xunbo, L., Na, L., Liang, C., Yan, S., Zhenlin, W., & Zhibin, Z. (2010). W-LEACH: Weighted low energy adaptive clustering hierarchy aggregation algorithm for data streams in wireless sensor networks. In International conference on measuring technology and mechatronics automation (ICMTMA) (Vol. 1, pp. 496–499).Google Scholar
  11. 11.
    Rahmanian, A., Omranpour, H., Akbari, M., & Raahemifar, K. (2011). A novel genetic algorithm in LEACH-C routing protocol for sensor networks. In 24th Canadian conference on electrical and computer engineering (CCECE) (pp. 001096–001100).Google Scholar
  12. 12.
    Handy, M. J., Haase, M., & Timmermann, D. (2002). Low energy adaptive clustering hierarchy with deterministic cluster-head selection. In 4th International workshop on mobile and wireless communications network (pp. 368–372).Google Scholar
  13. 13.
    Lu, J.-L., Valois, F., Barthel, D., & Dohler, M. (2007). FISCO: A fully integrated scheme of self-configuration and self-organization for WSN. In IEEE wireless communications and networking conference, WCNC 2007 (Vol. 5, pp. 3370–3375).Google Scholar
  14. 14.
    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRefGoogle Scholar
  15. 15.
    Mohamad, K. D. R., Muhamad, W. N. W., & Kadir, R. A. (2010). Evaluation of stable cluster head election (SCHE) routing protocol for wireless sensor networks. In Proceedings of the international multiconference of engineers and computer scientists (pp. 895–899).Google Scholar
  16. 16.
    Liu, X. (2012). A survey on clustering routing protocols in wireless sensor networks. Sensors, 12(8), 11113–11153.CrossRefGoogle Scholar
  17. 17.
    Pang, K. L., & Qin, Y. (2006). The comparison study of flat routing and hierarchical routing in ad hoc wireless networks. In Proceedings of the 14th IEEE international conference on networks (pp. 1–6).Google Scholar
  18. 18.
    Zhang, M., & Chong, P. H. J. (2009). Performance comparison of flat and cluster-based hierarchical ad hoc routing with entity and group mobility. In Proceedings of wireless communications and networking conference (pp. 1–6).Google Scholar
  19. 19.
    Chiti, F., Fantacci, R., & Lappoli, S. (2010). Contention delay minimization in wireless body sensor networks: A game theoretic perspective. In IEEE Global telecommunications conference (GLOBECOM 2010) (pp. 1–6).Google Scholar
  20. 20.
    Ira, N., Chaki, R., & Chaki, N. (2010). WACA: A new weighted adaptive clustering algorithm for MANET. In Recent trends in networks and communications (Vol. 90, pp. 270–283). Berlin, Heidelberg: Springer.Google Scholar
  21. 21.
    Wang, Y.-X., & Bao, F. S. (2007). An entropy-based weighted clustering algorithm and its optimization for ad hoc networks. In 2012 IEEE 8th international conference on wireless and mobile computing, networking and communications (WiMob) (pp. 56–56).Google Scholar
  22. 22.
    Ryder, G. S., & Ross, K. (2005). A probability collectives approach to weighted clustering algorithms for ad hoc networks. In Proceedings of the third IASTED international conference on communications and computer networks (pp. 94–99).Google Scholar
  23. 23.
    IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011) (2012): IEEE standard for local and metropolitan area networks-part 15.4: Low-rate wireless personal area networks (LR-WPANs) Amendment 1: MAC sublayer, pp. 1–225.Google Scholar
  24. 24.
    Bougard, B., Catthoor, F., Daly, D. C., Chandrakasan, A., & Dehaene, W. (2005). Energy Efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: Modeling and improvement perspectives. In Proceedings of the conference on design, automation and test in Europe (pp. 196–201).Google Scholar
  25. 25.
    Ramachandran, I., Das, A. K., & Roy, S. (2007). Analysis of the contention access period of IEEE 802.15.4 MAC. In ACM Transactions on Sensor Networks, New York, NY, USA (Vol. 3, No. 1, pp. 196–201).Google Scholar
  26. 26.
    He, J., Tang, Z., Chen, H.-H., & Zhang, Q. (2009). An accurate and scalable analytical model for IEEE 802.15.4 slotted CSMA/CA networks. IEEE Transactions on Wireless Communications, 8(1), 440–448.CrossRefGoogle Scholar
  27. 27.
    Pollin, S., Ergen, M., Ergen, S., Bougard, B., Der Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7(6), 3359–3371.CrossRefGoogle Scholar
  28. 28.
    Faridi, A., Palattella, M. R., Lozano, A., Dohler, M., Boggia, G., Grieco, L. A., et al. (2010). Comprehensive evaluation of the IEEE 802.15.4 MAC layer performance With retransmissions. IEEE Transactions on Vehicular Technology, 59(8), 3917–3932.CrossRefGoogle Scholar
  29. 29.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRefGoogle Scholar
  30. 30.
    Baranidharan, B., & Shanthi, B. (2010). A survey on energy efficient protocols for wireless sensor networks. International Journal of Computer Applications, 11(10), 35–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Francesco Chiti
    • 1
  • Romano Fantacci
    • 1
  • Riccardo Mastandrea
    • 1
  • Giovanni Rigazzi
    • 1
  • Álvaro Suárez Sarmiento
    • 2
  • Elsa María Macías López
    • 2
  1. 1.Department of Information EngineeringUniversity of FlorenceFlorenceItaly
  2. 2.Departamento de Ingeniería TelemáticaUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran Canaria, Gran CanariaSpain

Personalised recommendations