Skip to main content
Log in

A survey of wireless technologies coexistence in WBAN: analysis and open research issues

  • Published:
Wireless Networks Aims and scope Submit manuscript


Wireless Body Area Network (WBAN) is the most convenient, cost-effective, accurate, and non-invasive technology for e-health monitoring. The performance of WBAN may be disturbed when coexisting with other wireless networks. Accordingly, this paper provides a comprehensive study and in-depth analysis of coexistence issues and interference mitigation solutions in WBAN technologies. A thorough survey of state-of-the art research in WBAN coexistence issues is conducted. The survey classified, discussed, and compared the studies according to the parameters used to analyze the coexistence problem. Solutions suggested by the studies are then classified according to the followed techniques and concomitant shortcomings are identified. Moreover, the coexistence problem in WBAN technologies is mathematically analyzed and formulas are derived for the probability of successful channel access for different wireless technologies with the coexistence of an interfering network. Finally, extensive simulations are conducted using OPNET with several real-life scenarios to evaluate the impact of coexistence interference on different WBAN technologies. In particular, three main WBAN wireless technologies are considered: IEEE 802.15.6, IEEE 802.15.4, and low-power WiFi. The mathematical analysis and the simulation results are discussed and the impact of interfering network on the different wireless technologies is compared and analyzed. The results show that an interfering network (e.g., standard WiFi) has an impact on the performance of WBAN and may disrupt its operation. In addition, using low-power WiFi for WBANs is investigated and proved to be a feasible option compared to other wireless technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others


  1. Bluetooth low energy technology.

  2. IEEE Std 802.11-1997. (1997).

  3. IEEE Std 802.11g-2003. (1997).

  4. IEEE Std 802.15.4-2006. (2006).

  5. IEEE Std 802.15.1-2005. (2012).

  6. IEEE Std 802.15.6-2012. (2012).

  7. Acampora, G., Cook, D. J., Rashidi, P., & Vasilakos, A. V. (2013). A survey on ambient intelligence in healthcare. Proceedings of the IEEE, 101(12), 2470–2494.

    Article  Google Scholar 

  8. Agyei-Ntim, F., & Newman, K. (2013). Lifetime estimation of wireless body area sensor networks using probabilistic analysis. Wireless Personal Communications, 68(4), 1745–1759.

    Article  Google Scholar 

  9. Aiello, F., Fortino, G., Gravina, R., & Guerrieri, A. (2011). A java-based agent platform for programming wireless sensor networks. The Computer Journal, 54(3), 439–454.

    Article  Google Scholar 

  10. Ameen, M., Liu, J., & Kwak, K. (2012). Security and privacy issues in wireless sensor networks for healthcare applications. Journal of Medical Systems, 36(1), 93–101.

    Article  Google Scholar 

  11. Angrisani, L., Bertocco, M., Fortin, D., & Sona, A. (2008). Experimental study of coexistence issues between IEEE 802.11 b and IEEE 802.15. 4 wireless networks. IEEE Transactions on Instrumentation and Measurement, 57(8), 1514–1523.

    Article  Google Scholar 

  12. Atallah, L., Lo, B., King, R., & Yang, G. Z. (2010). Sensor placement for activity detection using wearable accelerometers. In International conference on body sensor, networks (pp. 24–29).

  13. Bae, J. N., Choi, Y. H., Kim, J. Y., Kwon, J. W., & Kim, D. I. (2011). Efficient interference cancellation scheme for wireless body area network. Journal of Communications and Networks, 13(2), 167–174.

    Article  Google Scholar 

  14. Boche, H., Naik, S., & Jorswieck, E. (2013). Detecting misbehavior in distributed wireless interference networks. Wireless Networks, 19(5), 799–810. doi:10.1007/s11276-012-0502-8.

    Article  Google Scholar 

  15. Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.

    Article  Google Scholar 

  16. Chen, M. (2013). MM-QoS for BAN: Multi-level MAC-layer QoS design in body area networks. In IEEE Globecom 2013, Atlanta, Georgia USA.

  17. Chen, M., Gonzalez, S., Leung, V., Zhang, Q., & Li, M. (2010). A 2G-RFID-based e-healthcare system. Wireless Communications IEEE, 17(1), 37–43. doi:10.1109/MWC.2010.5416348.

    Article  Google Scholar 

  18. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  19. Chen, M., Mau, D., Wang, X., & Wang, H. (2013). The virtue of sharing: Efficient content delivery in wireless body area networks for ubiquitous healthcare. In Proceedigns of IEEE Healthcom 2013 Lisbon, Portugal.

  20. Cheng, S., Huang, C., & Tu, C. C. (2011). Racoon: A multiuser QoS design for mobile wireless body area networks. Journal of Medical Systems, 35(5), 1277–1287.

    Article  Google Scholar 

  21. Chong, J. W., Hwang, H. Y., Jung, C. Y., & Sung, D. K. (2007). Analysis of throughput in a zigbee network under the presence of WLAN interference. In: Proceedins of IEEE ISCIT (pp. 1166–1170).

  22. Custodio, V., Herrera, F. J., Lpez, G., & Moreno, J. I. (2012). A review on architectures and communications technologies for wearable health-monitoring systems. Sensors, 12(10), 13907–13946.

    Article  Google Scholar 

  23. Davenport, D. M., Ross, F., & Deb, B. (2009). Wireless propagation and coexistence of medical body sensor networks for ambulatory patient monitoring. In Proceedings of IEEE BSN (pp. 41–45).

  24. de Francisco, R., Huang, L., & Dolmans, G. (2009). Coexistence of WBAN and WLAN in medical environments. In Proceedings of IEEE VTC-Fall (pp. 1–5).

  25. de Silva, B., Natarajan, A., & Motani, M. (2009). Inter-user interference in body sensor networks: Preliminary investigation and an infrastructure-based solution. In Proceedings of IEEE BSN (pp. 35–40).

  26. Deylami, M., & Jovanov, E. (2012). Performance analysis of coexisting IEEE 802.15. 4-based health monitoring WBANS. In Proceedings of IEEE EMBC (pp. 2464–2467).

  27. Domenicali, D., De Nardis, L., & Di Benedetto, M. G. (2009). UWB body area network coexistence by interference mitigation. In Proceedings of IEEE ICUWB (pp. 713–717).

  28. Domenicali, D., & Di Benedetto, M. G. (2007). Performance analysis for a body area network composed of IEEE 802.15. 4a devices. In Proceedings of IEEE WPNC (pp. 273–276).

  29. Dong, J., & Smith, D. (2012). Cooperative body-area-communications: Enhancing coexistence without coordination between networks. In Proceedings of IEEE PIMRC (pp. 2269–2274).

  30. Dotlic, I. (2011). Interference performance of IEEE 802.15. 6 impulse-radio ultra-wideband physical layer. In Proceedings of IEEE PIMRC (pp. 2148–2152).

  31. Duffy, K., Malone, D., & Leith, D. J. (2005). Modeling the 802.11 distributed coordination function in non-saturated conditions. IEEE Communications Letters, 9(8), 715–717.

    Article  Google Scholar 

  32. El-Bendary, M., Abou-El-Azm, A., El-Fishawy, N., Shawki, F., El-Tokhy, M., Abd El-Samie, F., et al. (2013). Image transmission over mobile bluetooth networks with enhanced data rate packets and chaotic interleaving. Wireless Networks, 19(4), 517–532. doi:10.1007/s11276-012-0482-8.

    Article  Google Scholar 

  33. Folea, S., & Ghercioiu, M. (2008). Ultra-low power Wi-Fi tag for wireless sensing. Proceedings of IEEE AQTR, 3, 247–252.

    Google Scholar 

  34. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., & Jafari, R. (2013). Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Transactions on Human-Machine Systems, 43(1), 115–133.

    Article  Google Scholar 

  35. Gainspan: Gainspan gs1010.

  36. Georgakakis, E., Nikolidakis, S., Vergados, D., Douligeris, C. (2011). An analysis of bluetooth, zigbee and bluetooth low energy and their use in wbans. In J. Lin, & K. Nikita (Eds.) Wireless mobile communication and healthcare, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 55, pp. 168–175).

  37. Ghanem, K., & Hall, P. (2009). Interference cancellation using CDMA multi-user detectors for on-body channels. In Proceedings of IEEE PIMRC (pp. 2152–2156).

  38. Golmie, N., Cypher, D., & Rébala, O. (2005). Performance analysis of low rate wireless technologies for medical applications. Computer Communications, 28(10), 1266–1275.

    Article  Google Scholar 

  39. Hadjidj, A., Souil, M., Bouabdallah, A., Challal, Y., & Owen, H. (2013). Wireless sensor networks for rehabilitation applications: Challenges and opportunities. Journal of Network and Computer Applications, 36(1), 1–15.

    Article  Google Scholar 

  40. Han, J. S., Kim, H. S., Bang, J. S., & Lee, Y. H. (2011). Interference mitigation in IEEE 802.15. 4 networks. In Proceedings of IEEE GLOBECOM (pp. 1–5).

  41. Han, S., Lee, S., Lee, S., & Kim, Y. (2007). Coexistence performance evaluation of IEEE 802.15. 4 under IEEE 802.11 b interference in fading channels. In Proceedings of IEEE PIMRC (pp. 1–5).

  42. Hanlen, L., Miniutti, D., Smith, D., Rodda, D., & Gilbert, B. (2010). Co-channel interference in body area networks with indoor measurements at 2.4 GHz: Distance-to-interferer is a poor estimate of received interference power. International Journal of Wireless Information Networks, 17(3), 113–125.

    Article  Google Scholar 

  43. Hauer, J. H., Handziski, V., & Wolisz, A. (2009). Experimental study of the impact of WLAN interference on IEEE 802.15.4 body area networks. In U. Roedig & C. J. Sreenan (Eds.), Wireless sensor networks (Vol. 5432, pp. 17–32).

  44. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. (2012). A distributed trust evaluation model and its application scenarios for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1164–1175.

    Article  Google Scholar 

  45. He, D., Chen, C., Chan, S., Bu, J., & Vasilakos, A. (2012). Retrust: Attack-resistant and lightweight trust management for medical sensor networks. IEEE Transactions on Information Technology in Biomedicine, 16(4), 623–632.

    Article  Google Scholar 

  46. Hernandez, M., & Miura, R. (2012). Coexistence of UWB systems for body area networks in AWGN. In Proceedings of IEEE ISMICT (pp. 1–4).

  47. Hou, J., Chang, B., Cho, D.K., & Gerla, M. (2009). Minimizing 802.11 interference on zigbee medical sensors. In Proceedings of ICST BodyNets (p. 5).

  48. Howitt, I., & Gutierrez, J. A. (2003). IEEE 802.15. 4 low rate-wireless personal area network coexistence issues. In Proceedings of IEEE WCNC (Vol. 3, pp. 1481–1486).

  49. Huang, C., Lee, H., & Lee, D. H. (2012). A privacy-strengthened scheme for e-healthcare monitoring system. Journal of Medical Systems, 36(5), 2959–2971.

    Article  Google Scholar 

  50. Huang, J., Xing, G., Zhou, G., & Zhou, R. (2010). Beyond co-existence: Exploiting wifi white space for zigbee performance assurance. In Proceedings of IEEE ICNP (pp. 305–314).

  51. Huang, Y. M., Hsieh, M. Y., Chao, H. C., Hung, S. H., & Park, J. H. (2009). Pervasive, secure access to a hierarchical-based healthcare monitoring architecture in wireless heterogeneous sensor networks. IEEE Journal on Selected Areas of Communications (JSAC), 27(4), 400–411.

    Article  Google Scholar 

  52. Jeong, Y., Kim, J., & Han, S. J. (2011). Interference mitigation in wireless sensor networks using dual heterogeneous radios. Wireless Networks, 17(7), 1699–1713.

    Article  Google Scholar 

  53. Jovanov, E., & Milenkovic, A. (2011). Body area networks for ubiquitous healthcare applications: Opportunities and challenges. Journal of Medical Systems, 35, 1245–1254.

    Article  Google Scholar 

  54. Kailas, A., & Ingram, M. A. (2009). Wireless aspects of telehealth. Wireless Personal Communications, 51(4), 673–686.

    Article  Google Scholar 

  55. Khan, J. Y., Yuce, M. R., Bulger, G., & Harding, B. (2012). Wireless body area network (WBAN) design techniques and performance evaluation. Journal of Medical Systems, 36(3), 1441–1457.

  56. Khan, P., Ullah, N., Ullah, S., & Kwak, K. (2011). Seamless interworking architecture for WBAN in heterogeneous wireless networks with QoS guarantees. Journal of Medical Systems, 35(5), 1313–1321.

    Article  Google Scholar 

  57. Kim, E. J., Youm, S., Shon, T., & Kang, C. H. (2012). Asynchronous inter-network interference avoidance for wireless body area networks. The Journal of Supercomputing (pp. 1–18)

  58. Kim, S., Kim, S., Kim, J. W., & Eom, D. S. (2012). A beacon interval shifting scheme for interference mitigation in body area networks. Sensors, 12(8), 10930–10946.

    Article  Google Scholar 

  59. Kwak, K. S., Ullah, S., & Ullah, N. (2010). An overview of IEEE 802.15. 6 standard. In Proceedings of IEEE ISABEL (pp. 1–6).

  60. Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., & Han, G. (2013). A survey of body sensor networks. Sensors, 13(5), 5406–5447.

    Article  Google Scholar 

  61. Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.

    Article  Google Scholar 

  62. Lee, K., Chae, C. B., Sung, T. K., & Kang, J. (2012). Cognitive beamforming based smart metering for coexistence with wireless local area networks. Journal of Communications and Networks, 14(6), 619–628.

    Article  Google Scholar 

  63. Lee, K. D., & Vasilakos, A. (2011). Access stratum resource management for reliable u-healthcare service in LTE networks. Wireless Networks, 17(7), 1667–1678. doi:10.1007/s11276-011-0371-6.

    Article  Google Scholar 

  64. Lee, W., Rhee, S. H., Kim, Y., & Lee, H. (2009). An efficient multi-channel management protocol for wireless body area networks. In Proceedings of IEEE ICOIN (pp. 1–5).

  65. Li, C., Hao, B., Zhang, K., Liu, Y., & Li, J. (2011). A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. Journal of Medical Systems, 35(5), 1265–1275. doi:10.1007/s10916-011-9682-5.

    Article  MATH  Google Scholar 

  66. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  67. Liang, C. J. M., Priyantha, N. B., Liu, J., & Terzis, A. (2010). Surviving wi-fi interference in low power zigbee networks. In Proceeedings of ACM SenSys (pp. 309–322).

  68. Liu, C., Zhang, T., Zhao, G., Wen, T., & Wang, L. (2010). Clubfoot pattern recognition towards personalized insole design. In International conference on body sensor, networks (pp. 273–276).

  69. Liu, X., Zheng, Y., Phyu, M. W., Zhao, B., & Yuan, X. (2010). Power and area efficient wavelet-based on-chip ECG processor for WBAN. In International conference on body sensor, networks (pp. 124–130).

  70. Martelli, F., & Verdone, R. (2012). Coexistence issues for wireless body area networks at 2.45 GHz. In Proceedings of VDE EW (pp. 1–6).

  71. Memon, M. U., Zhang, L. X., & Shaikh, B. (2012). Packet loss ratio evaluation of the impact of interference on zigbee network caused by wi-fi (IEEE 802.11 b/g) in e-health environment. In Proceedings of IEEE Healthcom (pp. 462–465).

  72. Mendez, G. R., Yunus, M., & Mukhopadhyay, S. C. (2011). A wifi based smart wireless sensor network for an agricultural environment. In Proceedings of IEEE ICST (pp. 405–410).

  73. Mitchell, E., Coyle, S., O’Connor, N., Diamond, D., & Ward, T. (2010). Breathing feedback system with wearable textile sensors. In International conference on body sensor, networks (pp. 56–61).

  74. Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15. 4 networks. In Internet proposed standard RFC 4944.

  75. Myers, S., Megerian, S., Banerjee, S., & Potkonjak, M. (2007). Experimental investigation of ieee 802.15. 4 transmission power control and interference minimization. In: Proceedings of IEEE SECON (pp. 294–303).

  76. Ostermaier, B., Kovatsch, M., & Santini, S. (2011) Connecting things to the web using programmable low-power wifi modules. In: Proc. of ACM WoT (p. 2).

  77. Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80–88.

    Article  Google Scholar 

  78. Petrova, M., Wu, L., Mahonen, P., & Riihijarvi, J. (2007). Interference measurements on performance degradation between colocated IEEE 802.11 g/n and IEEE 802.15. 4 networks. In Proceedings of IEEE ICN (pp. 93–93).

  79. Pollin, S., Tan, I., Hodge, B., Chun, C., & Bahai, A. (2008). Harmful coexistence between 802.15. 4 and 802.11: A measurement-based study. In Proceedings of IEEE CrownCom (pp. 1–6).

  80. Ragesh, G., & Baskaran, K. (2012). An overview of applications, standards and challenges in futuristic wireless body area networks. International Journal of Computer Science, 9(1), 180–186.

  81. Rebeiz, E., Caire, G., & Molisch, A. F. (2012). Energy-delay tradeoff and dynamic sleep switching for bluetooth-like body-area sensor networks. IEEE Transactions on Communications, 60(9), 2733–2746.

    Article  Google Scholar 

  82. Redpines: Redpines rs9110-n-11-31.

  83. Vallejos de Schatz, C. H., Medeiros, H. P., Schneider, F. K., & Abatti, P. J. (2012). Wireless medical sensor networks: Design requirements and enabling technologies. Telemedicine and e-Health, 18(5), 394–399.

    Article  Google Scholar 

  84. Schwiebert, L., Gupta, S. K., & Weinmann, J. (2001). Research challenges in wireless networks of biomedical sensors. In Proceedings of ACM MobiCom (pp. 151–165).

  85. Selimis, G., Huang, L., Mass, F., Tsekoura, I., Ashouei, M., Catthoor, F., et al. (2011). A lightweight security scheme for wireless body area networks: Design, energy evaluation and proposed microprocessor design. Journal of Medical Systems, 35(5), 1289–1298.

    Article  Google Scholar 

  86. Seyedi, M., Kibret, B., Lai, D., & Faulkner, M. (2013). A survey on intrabody communications for body area network applications. IEEE Transactions on Biomedical Engineering, 60(8), 2067–2079.

    Article  Google Scholar 

  87. Shah, R. C., Nachman, L., & Wan, C. (2008). On the performance of bluetooth and IEEE 802.15.4 radios in a body area network. In Proceedings of the ICST international conference on Body area networks, BodyNets ’08 (pp. 25:1–25:9).

  88. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  89. Shin, S. Y., Park, H. S., Choi, S., & Kwon, W. H. (2007). Packet error rate analysis of zigbee under wlan and bluetooth interferences. IEEE Transactions on Wireless Communications, 6(8), 2825–2830.

    Article  Google Scholar 

  90. Stuart, E., Moh, M., & Moh, T. S. (2008). Privacy and security in biomedical applications of wireless sensor networks. In Proceedings of IEEE ISABEL (pp. 1–5).

  91. Subbu, K. P., & Howitt, I. (2007). Empirical study of IEEE 802.15. 4 mutual interference issues. In Proceedings of IEEE SoutheastCon (pp. 191–195).

  92. Sun, G., Qiao, G., & Xu, B. (2012). Link characteristics measuring in 2.4 GHz body area sensor networks. International Journal of Distributed Sensor Networks, 2012, 13.

    Google Scholar 

  93. Sun, W., Ge, Y., & Wong, W. C. (2012). A lightweight inter-user interference mitigation method in body sensor networks. In Proceedings of IEEE WiMob (pp. 34–40).

  94. Torabi, N., & Leung, V. C. M. (2013). Realization of public m-health service in license-free spectrum. IEEE Journal of Biomedical and Health Informatics, 17(1), 19–29.

    Article  Google Scholar 

  95. Touati, F., & Tabish, R. (2013). U-healthcare system: State-of-the-art review and challenges. Journal of Medical Systems, 37(3), 1–20.

    Article  Google Scholar 

  96. Tozlu, S. (2011). Feasibility of wi-fi enabled sensors for internet of things. In: Proceedings of IEEE IWCMC (pp. 291–296).

  97. Tozlu, S., & Senel, M. (2012). Battery lifetime performance of Wi-Fi enabled sensors. In: Proceedings of IEEE CCNC (pp. 429–433).

  98. Tozlu, S., Senel, M., Mao, W., & Keshavarzian, A. (2012). Wi-Fi enabled sensors for internet of things: A practical approach. IEEE Communications Magazine, 50(6), 134–143.

    Article  Google Scholar 

  99. Ullah, S., Chen, M., & Kwak, K. (2012). Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol. Journal of Medical Systems, 36(6), 3875–3891.

    Article  Google Scholar 

  100. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36, 1065–1094.

    Article  Google Scholar 

  101. Ullah, S., & Kwak, K. S. (2011). Throughput and delay limits of IEEE 802.15.6. In: Proceedings of IEEE WCNC 2011.

  102. Ullah, S., Shen, B., Riazul Islam, S., Khan, P., Saleem, S., & Sup Kwak, K. (2009). A study of MAC protocols for WBANs. Sensors, 10(1), 128–145.

  103. Wang, L., Goursaud, C., Nikaein, N., Cottatellucci, L., & Gorce, J. (2013). Cooperative scheduling for coexisting body area networks. IEEE Transactions on Wireless Communications, 12(1), 123–133.

    Article  Google Scholar 

  104. Wang, X., & Cai, L. (2011). Interference analysis of co-existing wireless body area networks. In Proceedings of IEEE GLOBECOM (pp. 1–5).

  105. Wang, Y., & Wang, Q. (2011). Evaluating the IEEE 802.15. 6 2.4 GHz wban proposal on medical multi-parameter monitoring under wifi/bluetooth interference. International Journal of E-Health and Medical Communications (IJEHMC), 2(3), 48–62.

    Article  Google Scholar 

  106. Wang, Y., Wang, Q., Zeng, Z., Zheng, G., & Zheng, R. (2011). Wicop: Engineering wifi temporal white-spaces for safe operations of wireless body area networks in medical applications. In: Proceedings of IEEE RTSS (pp. 170–179).

  107. Wegmueller, M., Oberle, M., Felber, N., Kuster, N., & Fichtner, W. (2010). Signal transmission by galvanic coupling through the human body. IEEE Transactions on Instrumentation and Measurement, 59(4), 963–969.

    Article  Google Scholar 

  108. Wong, A., Dawkins, M., Devita, G., Kasparidis, N., Katsiamis, A., King, O., et al. (2013). A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy wban transceiver for biotelemetry applications. IEEE Journal of Solid-State Circuits, 48(1), 186–198.

    Article  Google Scholar 

  109. Wu, G., Ren, J., Xia, F., Yao, L., & Xu, Z. (2010). Disg: Decentralized inter-user interference suppression in body sensor networks with non-cooperative game. In Proceedings of IEEE UIC/ATC (pp. 256–261).

  110. Xiong, N., Vasilakos, A., Yang, L., Song, L., Pan, Y., Kannan, R., et al. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.

    Article  Google Scholar 

  111. Xu, R., Shi, G., Luo, J., Zhao, Z., & Shu, Y. (2011). Muzi: Multi-channel zigbee networks for avoiding wifi interference. In Proceedings of IEEE iThings/CPSCom (pp. 323–329).

  112. Yan, L., Zhong, L., & Jha, N. K. (2007). Energy comparison and optimization of wireless body-area network technologies. In Proceedings of ICST BodyNets (pp. 8:1–8:8).

  113. Yang, D., Xu, Y., & Gidlund, M. (2011). Wireless coexistence between IEEE 802.11- and IEEE 802.15.4-based networks: A survey. International Journal of Distributed Sensor Networks, 2011, 17.

    Article  Google Scholar 

  114. Yang, W. B., & Sayrafian-Pour, K. (2010). A DS-CDMA interference cancellation technique for body area networks. In: Proceedings of IEEE PIMRC (pp. 752–756).

  115. Yang, W. B., & Sayrafian-Pour, K. (2012). Interference mitigation using adaptive schemes in body area networks. International Journal of Wireless Information Networks, 19(3), 193–200.

    Article  Google Scholar 

  116. Yuan, W., Wang, X., Linnartz, J. P. M., & Niemegeers, I. G. (2013). Coexistence performance of IEEE 802.15. 4 wireless sensor networks under IEEE 802.11 b/g interference. Wireless Personal Communications, 68(2), 281–302.

    Article  Google Scholar 

  117. Zhang, A., Smith, D. B., Miniutti, D., Hanlen, L. W., Rodda, D., & Gilbert, B. (2010). Performance of piconet co-existence schemes in wireless body area networks. In Proceedings of IEEE WCNC (pp. 1–6).

  118. Zhang, Z., Wang, H., Vasilakos, A., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.

    Article  Google Scholar 

  119. Zhou, B. L., Zheng, B., Cui, J., & Geller, B. (2011). Media-aware distributed scheduling over wireless body sensor networks. In Proceedings of IEEE ICC.

  120. Zhou, C., & Chao, H. (2011). Multimedia traffic security architecture for internet of things. IEEE Network, 25(3), 35–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thaier Hayajneh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayajneh, T., Almashaqbeh, G., Ullah, S. et al. A survey of wireless technologies coexistence in WBAN: analysis and open research issues. Wireless Netw 20, 2165–2199 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI: