Skip to main content
Log in

Cloud-assisted body area networks: state-of-the-art and future challenges

  • Published:
Wireless Networks Aims and scope Submit manuscript


Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others


  1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  3. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  4. Yang, G. Z. (2006). Body sensor networks. Berlin: Springer.

    Book  Google Scholar 

  5. Hao, Y., & Foster, R. (2008). Wireless body sensor networks for health-monitoring applications. Physiological Measurement, 29, R27.

    Article  Google Scholar 

  6. Augimeri, A, Fortino, G., Reje, M. R., Handziski, V., & Wolisz, A. (2010) A cooperative approach for handshake detection based on body sensor networks. In Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC 2010), Istanbul, Turkey, October 10–13.

  7. Augimeri, A., Fortino, G., Galzarano, S., & Gravina, R. (2011). Collaborative body sensor networks. In Proceedings of the international conference IEEE systems, man and cybernetics (SMC 2011), October 9–12, Anchorage, Alaska, USA.

  8. Fortino, G., Pathan, M., & Di Fatta, G. (2012). BodyCloud: Integration of cloud computing and body sensor networks. In Proceedings of CloudCom ’12.

  9. Dourish, P. (1995). The parting of the ways: Divergence, data management and collaborative work. In Proceedings of the 4th conference on European conference on computer-supported cooperative work, p. 230.

  10. Yi, W., & Blake, M. B. (2010). Service-oriented computing and cloud computing: Challenges and opportunities. IEEE Internet Computing, 14(6), 72, 75. doi:10.1109/MIC.2010.147.

  11. Hanson, M. A., Powell, H., Barth, A. T., Ringgenberg, K., Calhoun, B. H., Aylor, J. H., et al. (2009). Body area sensor networks: Challenges and opportunities. IEEE Computer, 42(1), 58–65.

    Article  Google Scholar 

  12. Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80–88.

    Article  Google Scholar 

  13. Malan, D., Fulford-Jones, T., Welsh, M., & Moulton, S. (2004). Codeblue: An ad hoc sensor network infrastructure for emergency medical care. In Proceedings of the international workshop on wearable and implantable body sensor networks.

  14. Lombriser, C., Roggen, D., Stager, M., & Troster, G., Titan, G. (2007). A tiny task network for dynamically reconfigurable heterogeneous sensor networks. In Kommunikation in Verteilten Systemen (KiVS). Springer, New York.

  15. Zhang, M., & Sawchuk, A. (2009). A customizable framework of body area sensor network for rehabilitation. In Proceedings of the 2nd international symposium on applied science biomedicine communication technology, November 2009, pp. 24–27.

  16. Bellifemine, F., Fortino, G., Giannantonio, R., Gravina, R., Guerrieri, A., & Sgroi, M. (2011). SPINE: A domain-specific framework for rapid prototyping of WBSN applications. Software Practice and Experience, 41(3), 237–265. doi:10.1002/spe.

    Article  Google Scholar 

  17. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., & Jafari, R. (2013). Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications. IEEE Transactions on Human-Machine Systems, 43(1), 115–133.

    Article  Google Scholar 

  18. Raveendranathan, N., Galzarano, S., Loseu, V., Gravina, R., Giannantonio, R., Sgroi, M., et al. (2012). From Modeling to Implementation of Virtual Sensors in Body Sensor Networks. IEEE Sensors Journal, 12(3), 583–593.

    Article  Google Scholar 

  19. Fortino, G., Guerrieri, A., Giannantonio, R., & Bellifemine, F. (2009). Platform-independent development of collaborative WBSN applications: SPINE2. In Proceedings of IEEE International conference on systems, man, and cybernetics (SMC 2009), San Antonio (Texas, USA), October 11–14.

  20. Fortino, G., Guerrieri, A., Giannantonio, R., & Bellifemine, F. (2009). SPINE2: Developing BSN applications on heterogeneous sensor nodes. In Proceedings of IEEE symposium on industrial embedded systems (SIES ’09), special session on wireless health, Lausanne (Switzerland), 8–10 July.

  21. Galzarano, S., Fortino, G., & Liotta, A. (2012). Embedded self-healing layer for detecting and recovering sensor faults in body sensor networks. In Proceedings of IEEE systems, man and cybernetics (SMC 2012), Seoul.

  22. Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (2006). Bigtable: A distributed storage system for structured data. In USENIX symposium on operating systems design and implementation (OSDI 2006), November 6–8, Seattle, WA, USA.

  23. Huang, C., Huseyin, S., Yikang, Y., Ogus, A., Calder, B., Parikshit, G., et al. (2012). Erasure coding in windows azure storage. In USENIX ATC.

  24. Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning workbench. In Proceedings of the 2nd Australia and New Zealand conference on intelligent information systems, Brisbane, Australia.

  25. Berthold, M., Cebron, N., Dill, F., Di Fatta, G., Gabriel, T., Georg, F., et al. (2006). KNIME: The Konstanz information miner. In Proceedings of workshop on multi-agent systems and simulation (MAS&S), 4th annual industrial simulation conference (ISC), Palermo, Italy, June 5–7, 2006, pp. 58–61.

  26. Guazzelli, A., Zeller, M., Chen, W., & Williams, G. (2009). PMML: An open standard for sharing models. The R Journal, 1/1, 60–65.

    Google Scholar 

  27. Kurschl, W., & Beer, W. (2009). Combining cloud computing and wireless sensor networks. In Proceeding of the 11th international conference on information integration and web-based applications & services, pp. 512–518, 2009.

  28. Khana, A. N., Mat Kiah, M. L., Khanb, S. U., & Madanic, S. A. (2013). Towards secure mobile cloud computing: A survey. Future Generation Computer Systems, 29, 1278–1299.

    Article  Google Scholar 

  29. Lounis, A., Hadjidj, A., Bouabdallah, A., & Challal, Y (2012) Secure and scalable cloud-based architecture for e-health wireless sensor networks. In Computer communications and networks (ICCCN), 2012 21st international conference on, pp. 1, 7, July 30 2012–Aug. 2.

  30. Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data stream systems. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, ACM Press, NY, USA, pp. 1–16.

  31. Golab, L., & Özsu, M. (2003). Issues in data stream management. ACM SIGMOD Record, 32(2), 5–14.

    Article  Google Scholar 

  32. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., et al. (2003). Query processing, resource management and approximation in a data stream management system. In Proceedings of international conference on innovative data systems research (CIDR ‘03).

  33. Aberer, K., Hauswirth, M., & Salehi, A. (2007). Infrastructure for data processing in large-scale interconnected sensor networks. In Proceedings of the international conference on mobile data management (MDM ‘07).

  34. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M., Hellerstein, J., Hong, W., et al. (2003). TelegraphCQ: Continuous dataflow processing. In Proceedings of the international conference on innovative data systems research (CIDR ‘03).

  35. Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., et al. (2003). Aurora: A new model and architecture for data stream management. The VLDB Journal, 12(2), 120–139.

    Article  Google Scholar 

  36. Arvind, D., Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., et al. (2003). STREAM: The Stanford stream data manager. IEEE Data Engineering Bulletin, 26(1), 19–26.

    Google Scholar 

  37. Pietzuch, P., Shneidman, J., Welsh, M., Seltzer, M., & Roussopoulos, M. (2004). Path optimization in stream-based overlay networks. Technical Report, TR-26-04, Harvard University.

  38. Huebsch, R., Chun, B., Hellerstein, J., Loo, B., Maniatis, P., Roscoe, T., et al. (2005). The architecture of PIER: An internet-scale query processor. In Proceedings of the 2nd biennial conference on innovative data system research, pp. 28–43.

  39. Delin, K., & Jackson, S. (2001). The sensor web: A new instrument concept. In Proceedings of the SPIE symposium on integrated optics.

  40. Shen, C., Srisathapornphat, C., & Jaikaeo, C. (2001). Sensor information networking architecture and applications. IEEE Wireless Communications, 8(4), 52–59.

    Google Scholar 

  41. Buonadonna, P., Gay, D., Hellerstein, J., Hong, W., & Madden, S. (2005). Task: Sensor network in a box. In Proceedings of the 2nd European conference on wireless sensor networks, pp. 133–144.

  42. Kuryloski, P., Giani, A., Giannantonio, R., Gilani, K., Gravina, R., Seppa, V. P., et al. (2009). DexterNet: An open platform for heterogeneous body sensor networks and its applications. In Proceedings of sixth international workshop on wearable and implantable body sensor networks (BSN’09), pp. 92–97.

  43. Gravina, R., Guerrieri, A., Fortino, G., Bellifemine, F., Giannantonio, R., & Sgroi, M. (2008) Development of body sensor network applications using SPINE. In Proceedings of the IEEE international conference on systems, man, and cybernetics (SMC 2008), Singapore, October 12–15.

  44. Chu, X., & Buyya, R. (2007). Service oriented sensor web. In Sensor networks and configuration, pp. 51–74.

  45. Yuriyama, M., & Kushida, T. (2010). Sensor-cloud infrastructure-physical sensor management with virtualized sensors on cloud computing. In Proceedings of the international conference on network-based information systems (NBiS ‘10), pp. 1–8.

  46. Fortino, G., Gravina, R., Guerrieri, A., & Di Fatta, G. (2013). Engineering large-scale body area networks applications. In Proceedings of 8th international conference on body area networks (BodyNets), Boston (USA).

  47. Fortino, G., Parisi, D., Pirrone, V., & Di Fatta, G. (2014). BodyCloud: A SaaS approach for community body sensor networks. Future Generation Computer Systems, 35(6), 62–79.

  48. Distefano, S., Merlino, G., & Puliafito, A. (2012). SAaaS: A framework for volunteer-based sensing clouds. Parallel and Cloud Computing, 1(2), 21–33.

    Google Scholar 

  49. Pandey, S., Voorsluys, W., Niu, S., Khandoker, A., & Buyya, R. (2012). An autonomic cloud environment for hosting ECG data analysis services. Future Generation Computer Systems, 28(1), 147–154.

    Google Scholar 

  50. Phan, D., Suzuki, J., Omura, S., & Oba, K. (2013). Toward sensor-cloud integration as a service: Optimizing three-tier communication in cloud-integrated sensor networks. In Proceeding of 8th international conference on body area networks (BodyNets), Boston (USA).

  51. Xu, Y., Helal, S., Thai, M., & Scmalz, M. (2011). Optimizing push/pull envelopes for energy-efficient cloud-sensor systems. In Proceedings of the 14th ACM international conference on modeling, analysis and simulation of wireless and mobile systems (MSWiM ‘11). ACM, New York, NY, USA, 17–26.

  52. Forkan, A., Khalil, I., & Tari, Z. (2014). CoCaMAAL: A cloud-oriented context-aware middleware in ambient assisted living. Future Generation Computer Systems, 35, 114–127.

    Google Scholar 

  53. Liao, W., Chang, J.-J., Wu, J., & Vasilakos, A. V. (to appear). Software-defined networking: Challenges, solutions, and opportunities. IEEE Network Magazine.

  54. Luo, T., Tan, H.-P., & Tony, Q., & Quek, S. (2012). Sensor OpenFlow: Enabling software-defined wireless sensor networks. IEEE Communications Letters, 16(1), 1896–1899.

    Google Scholar 

  55. Fortino, G., & Pathan, M. (Eds.). (2014). Special issue on the integration of body sensor networks and cloud computing. Future Generation Computer Systems (to appear).

  56. Ali, S. T., Sivaraman, V., & Ostry, D. (2014). Authentication of lossy data in body-sensor networks for cloud-based healthcare monitoring. Future Generation Computer Systems, 35, 80–90.

    Google Scholar 

  57. Reza Rahimi, M., Ren, J., Liu, C. H., Vasilakos, A. V., Venkatasubramanian, N. (2013, November) Mobile cloud computing: A survey, state of art and future directions. In ACM/Springer mobile application and networks (MONET), doi:10.1007/s11036-013-0477-4.

  58. Reza Rahimi, M., Venkatasubramanian, N., Mehrotra, S., & Vasilakos, A. V. (2012). MAPCloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In Proceedings of IEEE fifth international conference on utility and cloud computing (UCC 2012), pp. 83, 90, 5–8 November 2012.

  59. Serrano, M., Nguyen, H., Quoc, M., Hauswirth, M., Wang, W., Barnaghi, P., et al. (2013). Open services for IoT cloud applications in the future internet. In IEEE proceedings of the 2nd IEEE WoWMoM 2013 workshop on the internet of things and smart objects (IoT-SoS 2013).

  60. Giménez, P., Molina, B., Calvo-Gallego, J., Esteve, M., & Palau, C. E. (2013). I3WSN: Industrial intelligent wireless sensor networks for indoor environments. Computers in Industry. Available online 9 October 2013, ISSN 0166-3615, doi:10.1016/j.compind.2013.09.002.

  61. Aiello, F., Bellifemine, F., Galzarano, S., Gravina, R., & Fortino, G. (2011). An agent-based signal processing in-node environment for real-time human activity monitoring based on wireless body sensor networks. Journal of Engineering Applications of Artificial Intelligence, 24(7), 1147–1161.

    Article  Google Scholar 

  62. Aiello, F., Fortino, G., Gravina, R., & Guerrieri, A. (2011). A java-based agent platform for programming wireless sensor networks. The Computer Journal, 54(3), 439–454.

    Article  Google Scholar 

  63. Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. IEEE Computer, 36(1), 41–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Giancarlo Fortino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortino, G., Di Fatta, G., Pathan, M. et al. Cloud-assisted body area networks: state-of-the-art and future challenges. Wireless Netw 20, 1925–1938 (2014).

Download citation

  • Published:

  • Issue Date:

  • DOI: