Skip to main content
Log in

Cooperative signal amplification for molecular communication in nanonetworks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Nanotechnology is enabling the development of devices in a scale ranging from a few to hundreds of nanometers. Communication between these devices greatly expands the possible applications, increasing the complexity and range of operation of the system. In particular, the resulting nanocommunication networks (or nanonetworks) show great potential for applications in the biomedical field, in which diffusion-based molecular communication is regarded as a promising alternative to EM-based solutions due to the bio-stability and energy-related requirements of this scenario. However, molecular signals suffer a significant amount of attenuation as they propagate through the medium, thus limiting the transmission range. In this paper, a signal amplification scheme for molecular communication nanonetworks is presented wherein a group of emitters jointly transmits a given signal after achieving synchronization. This is achieved by means of quorum sensing (QS), a method used by bacteria to both sense their population and coordinate their actions. By using the proposed methodology, the transmission range is extended proportionally to the number of synchronized emitters. An analytical model of QS is provided and validated through simulation. This model is the main contribution of this work and accounts for the activation threshold (which will eventually determine the resulting amplification level) and the delay of the synchronization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this case, only free space electromagnetic radiation was considered.

References

  1. Abadal, S., & Akyildiz, I. F. (2011). Automata modeling of quorum sensing for nanocommunication networks. Nano Communication Networks, 2(1), 74–83.

    Article  Google Scholar 

  2. Abadal, S., & Akyildiz, I. F. (2011). Bio-inspired synchronization for nanocommunication networks. In IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–5), Houston, TX, USA.

  3. Abadal, S., Llatser, I., Alarcón, E., & Cabellos-Aparicio, A. (2012). Quorum sensing-enabled amplification for molecular nanonetworks. In Proceedings of the 2nd IEEE international workshop on molecular and nano-scale communications, held in conjunction with IEEE ICC.

  4. Akyildiz, I. F., Brunetti, F., Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279. doi:10.1016/j.comnet.2008.04.001.

    Article  Google Scholar 

  5. Akyildiz, I. F., Fekri, F., Sivakumar, R., Forest, C. R., Hammer, B. K. (2012). MoNaCo: Fundamentals of molecular nano-communication networks. IEEE Wireless Communications, 19(5), 12–18.

    Article  Google Scholar 

  6. Akyildiz, I. F., Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks (Elsevier) Journal, 1(1), 3–19.

    Article  Google Scholar 

  7. Akyildiz, I. F., Jornet, J. M. (2010). The internet of nano-things. Wireless Communications, IEEE, 17(6), 58–63.

    Article  Google Scholar 

  8. Banks, D. S., Fradin, C. (2005). Anomalous diffusion of proteins due to molecular crowding. Biophysical journal, 89(5), 2960–71. doi:10.1529/biophysj.104.051078.

    Article  Google Scholar 

  9. Bossert, W. H., Wilson, E. O. (1963). The analysis of olfactory communication among animals. Journal of theoretical biology, 5(3), 443–69.

    Article  Google Scholar 

  10. Danino, T., Mondragón-Palomino, O., Tsimring, L., Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463(7279), 326–30. doi:10.1038/nature08753.

    Article  Google Scholar 

  11. Devreotes, P., Derstine, P., Steck, T. (1979). Cyclic 3′, 5′AMP relay in Dictyostelium discoideum. The Journal of cell biology, 80(2), 291–299.

    Article  Google Scholar 

  12. Dockery, J. D., Keener, J. P. (2001). A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bulletin of Mathematical Biology, 63(1), 95–116. doi:10.1006/bulm.2000.0205.

    Article  Google Scholar 

  13. Fuqua, C., Winans, S., Greenberg, P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulatorst. Journal of Bacteriology, 176(2), 269–275.

    Google Scholar 

  14. Garralda, N., Llatser, I., Cabellos-Aparicio, A., Pierobon, M. (2011). Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In Proceedings of the 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM.

  15. Goryachev, A. B., Toh, D. J., Wee, K. B., Lee, T., Zhang, H. B., Zhang, L. H. (2005). Transition to quorum sensing in an agrobacterium population: A stochastic model. PLoS Computational Biology, 1(4), 265–275.

    Article  Google Scholar 

  16. Henke, J., Bassler, B. (2004). Bacterial social engagements. Trends in Cell Biology, 14(11), 648–656.

    Article  Google Scholar 

  17. Hong, Y. W., Scaglione, A. (2003). Time synchronization and reach-back communications with pulse-coupled oscillators for UWB wireless ad hoc networks. In Proceedings of the IEEE conference on ultra wideband systems and technologies (pp. 190–194), IEEE. doi:10.1109/UWBST.2003.1267830.

  18. Yeh, H. -Y. (2009). Real-time molecular methods to detect infectious viruses. Seminars in cell developmental biology, 20(1), 49–54.

    Article  Google Scholar 

  19. Jornet, J. M., Akyildiz, I. F. (2010). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In EUCAP (ed.) Proceedings of 4th European conference on antennas and propagation. Barcelona.

  20. Jornet, J. M., Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.

    Article  Google Scholar 

  21. Krasnogor, N., Gheorghe, M., Terrazas, G., Diggle, S., Williams, P., Camara, M. (2005). An appealing computational mechanism drawn from bacterial quorum sensing. Bulletin of the EATCS, 85, 135–148.

    MATH  MathSciNet  Google Scholar 

  22. Kuran, M. Ş., Yilmaz, H. B., Tugcu, T., Akyildiz, I. F. (2011). Modulation techniques for communication via diffusion in nanonetworks. In 2011 IEEE international conference on communications (ICC) (pp. 1–5), IEEE. doi:10.1109/icc.2011.5962989.

  23. Kuran, M. Ş., Yilmaz, H. B., Tugcu, T., Özerman, B. (2010). Energy model for communication via diffusion in nanonetworks. Nano Communication Networks, 1(2), 86–95. doi:10.1016/j.nancom.2010.07.002.

    Article  Google Scholar 

  24. Llatser, I., Alarcón, E., & Pierobon, M. (2011). Diffusion-based channel characterization in molecular nanonetworks. In Proceedings of the 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM.

  25. Llatser, I., Pascual, I., Garralda, N., Cabellos-aparicio, A., Pierobon, M., Alarcón, E., & Solé-Pareta, J. (2011). Exploring the physical channel of diffusion-based molecular communication by simulation. In IEEE global telecommunications conference (GLOBECOM 2011) (pp. 1–5), Houston, TX, USA.

  26. Mahfuz, M. U., Makrakis, D., & Mouftah, H. T. (2010). On the characterization of binary concentration-encoded molecular communication in nanonetworks. Nano Communication Networks, 1(4), 289–300. doi:10.1016/j.nancom.2011.01.001.

    Article  Google Scholar 

  27. Moore, M., Enomoto, A., Nakano, T., Okaie, Y., & Suda, T. (2007). Interfacing with nanomachines through molecular communication. IEEE international conference on systems man and cybernetics, pp. 18–23.

  28. Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. 1st IEEE international workshop on molecular and nano scale communication (MoNaCom), held in conjunction with IEEE INFOCOM, pp. 501–506.

  29. Nakano, T., & Suda, T. (2007). Molecular communication through gap junction channels: System design, experiments and modeling. 2nd Bio-Inspired models of network, information and computing systems, pp. 139–146. doi:10.1109/BIMNICS.2007.4610100.

  30. Nakano, T., Suda, T., Moore, M., Egashira, R., Enomoto, A., & Arima, K. (2005). Molecular communication for nanomachines using intercellular calcium signaling. In Proceedings of the Fifth IEEE conference on nanotechnology (pp. 478–481). Citeseer, Nagoya, Japan.

  31. Parcerisa, L., & Akyildiz, I. F. (2009). Molecular communication options for long range nanonetworks. Computer Networks, 53(16), 2753–2766.

    Article  Google Scholar 

  32. Philibert, J. (2006). One and a half century of diffusion: Fick, Einstein, before and beyond. Diffusion Fundamentals, 4(6), 1–19.

    Google Scholar 

  33. Pierobon, M., Akyildiz, I. F. (2010). A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications (JSAC), 28(4), 602–611.

    Article  Google Scholar 

  34. Pierobon, M., Akyildiz, I. F. (2011). Diffusion-based noise analysis for molecular communication in nanonetworks. IEEE Transactions on Signal Processing, 59(6), 2532–47.

    Article  MathSciNet  Google Scholar 

  35. Pierobon, M., Akyildiz, I. F. (2011). Information capacity of diffusion-based molecular communication in nanonetworks. In Proceedings of IEEE INFOCOM Miniconference, pp. 2–6.

  36. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L. S., Hasty, J. (2012). A sensing array of radically coupled genetic biopixels. Nature, 481(0), 39–44.

    Google Scholar 

  37. Rutherglen, C., Burke, P. (2009). Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes. Small (Weinheim an der Bergstrasse, Germany), 5(8), 884–906. doi:10.1002/smll.200800527.

    Article  Google Scholar 

  38. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6(9), 652–5. doi:10.1038/nmat1967.

    Article  Google Scholar 

  39. ShahMohammadian, H., Messier, G. G., Magierowski, S. (2012). Optimum receiver for molecule shift keying modulation in diffusion-based molecular communication channels. Nano Communication Networks, 3(3), 183–195. doi:10.1016/j.nancom.2012.09.006.

    Article  Google Scholar 

  40. Suda, T., Moore, M., Nakano, T., Egashira, R., Enomoto, A. (2005). Exploratory research on molecular communication between nanomachines. In Genetic and evolutionary computation conference (GECCO). Late breaking papers, June (2005).

  41. Ugalde, U. (2006). Autoregulatory signals in Mycelial Fungi. The Mycota, 1(2), 203–213.

    Article  Google Scholar 

  42. Xavier, K., Bassler, B. (2003). LuxS quorum sensing: More than just a numbers game. Current opinion in microbiology, 6(2), 191–197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergi Abadal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abadal, S., Llatser, I., Alarcón, E. et al. Cooperative signal amplification for molecular communication in nanonetworks. Wireless Netw 20, 1611–1626 (2014). https://doi.org/10.1007/s11276-014-0696-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0696-z

Keywords

Navigation