Advertisement

Wireless Networks

, Volume 20, Issue 6, pp 1445–1459 | Cite as

Optimizing event coverage in theme parks

  • Gürkan Solmaz
  • Damla TurgutEmail author
Article

Abstract

Theme parks can be modeled as geographical areas where large crowds of people move among different attractions. The operators of a theme park are interested in quickly and efficiently handling events occurring at various locations in the park. We propose a model which deploys a wireless network with mobile sinks to facilitate event coverage. The event coverage problem can be divided into two sub-problems: the static problem of mobile sink positioning and the dynamic problem of event handling decisions of the mobile sinks. For the mobile sink positioning problem we propose two strategies: crowd density based probability estimation and hot-spot based probability estimation. For the event handling decision problem, we propose an approach which represents movement opportunities in the park as a graph with dynamically changing weights, and searches for the shortest path in this dynamic graph. The proposed approaches are simulated on scenarios which model the movement of the visitors using two sophisticated human mobility models.

Keywords

Event coverage Mobility models Mobile sink Theme parks Sensor networks 

References

  1. 1.
    Solmaz, G., & Turgut, D. (2013). Event coverage in theme parks using wireless sensor networks with mobile sinks. In Proceedings of the IEEE ICC’13 (pp. 1522–1526).Google Scholar
  2. 2.
    Report on safety. Walt Disney Resorts and Parks. Technical report, Jan 2008. (Online). http://thewaltdisneycompany.com/about-disney/security.
  3. 3.
    Guo, L., Beyah, R. A., & Li, Y. (2011). SMITE: A stochastic compressive data collection protocol for mobile wireless sensor networks. In Proceedings of the IEEE INFOCOM’11 (pp. 1611–1619).Google Scholar
  4. 4.
    Pazzi, R., Zhang, D., Boukerche, A., & Mokdad, L. (2011). E-TRAIL: Energy-efficient trail-based data dissemination protocol for wireless sensor networks with mobile sinks. In Proceedings of the IEEE ICC’11 (pp. 1–5).Google Scholar
  5. 5.
    Cheng, X., Du, D.-Z., Wang, L., & Xu, B. (2008). Relay sensor placement in wireless sensor networks. Wireless Networks, 14(3), 347–355.CrossRefGoogle Scholar
  6. 6.
    Xu, K., Hassanein, H., Takahara, G., & Wang, Q. (2010). Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing, 9(2), 145–159.CrossRefGoogle Scholar
  7. 7.
    Al-Turjman, F. M., Hassanein, H. S., Alsalih, W. M., & Ibnkahla, M. (2011). Optimized relay placement for wireless sensor networks federation in environmental applications. Wireless Communications and Mobile Computing, 11(12), 1677–1688.CrossRefGoogle Scholar
  8. 8.
    Sugihara, R., & Gupta, R. K. (2011). Path planning of data mules in sensor networks. ACM Transactions on Sensor Networks, 8(1), 1–27.CrossRefGoogle Scholar
  9. 9.
    Dimokas, N., Katsaros, D., Tassiulas, L., & Manolopoulos, Y. (2011). High performance, low complexity cooperative caching for wireless sensor networks. Wireless Networks, 17(3), 717–737.CrossRefGoogle Scholar
  10. 10.
    Resta, G., & Santi, P. (2012). The fundamental limits of broadcasting in dense wireless mobile networks. Wireless Networks, 18(6), 679–695.CrossRefGoogle Scholar
  11. 11.
    Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., & Wang, Z. M. (2008). Controlled sink mobility for prolonging wireless sensor networks lifetime. Wireless Networks, 14(6), 831–858.CrossRefGoogle Scholar
  12. 12.
    Basagni, S., Carosi, A., Petrioli, C., & Phillips, C. A. (2008). Moving multiple sinks through wireless sensor networks for lifetime maximization. In MASS (pp. 523–526).Google Scholar
  13. 13.
    Basagni, S., Carosi, A., & Petrioli, C. (2009). Heuristics for lifetime maximization in wireless sensor networks with multiple mobile sinks. In Proceedings of the IEEE ICC’09 (pp. 1–6).Google Scholar
  14. 14.
    Basagni, S., Carosi, A., Petrioli, C., & Phillips, C. A. (2011). Coordinated and controlled mobility of multiple sinks for maximizing the lifetime of wireless sensor networks. Wireless Networks, 17(3), 759–778.CrossRefGoogle Scholar
  15. 15.
    Basagni, S., Nati, M., Petrioli, C., & Petroccia, R. (2009). ROME: Routing over mobile elements in WSNs. In Proceedings of the IEEE GLOBECOM’2009 (pp. 1 –7).Google Scholar
  16. 16.
    Vergados, D., Sgora, A., Vergados, D., & Chatzimisios, P. (2011). Joint per-flow scheduling and routing in wireless multihop networks. In Proceedings of the ISCC’11 (pp. 213 –217).Google Scholar
  17. 17.
    Haberman, B. K., & Sheppard, J. W. (2012). Overlapping particle swarms for energy-efficient routing in sensor networks. Wireless Networks, 18(4), 351–363.CrossRefGoogle Scholar
  18. 18.
    Sanchez, J. A., Marin Perez, R., & Ruiz, P. M. (2012). Beacon-less geographic multicast routing in a real-world wireless sensor network testbed. Wireless Networks, 18(5), 565–578.CrossRefGoogle Scholar
  19. 19.
    Kadas, G., & Chatzimisios, P. (2011). Collaborative efforts for safety and security in vehicular communication networks. In Proceedings of the PCI’11 (pp. 117–121).Google Scholar
  20. 20.
    Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.CrossRefGoogle Scholar
  21. 21.
    Bai, F., & Helmy, A. (2006). A survey of mobility models in wireless ad hoc networks. In Wireless ad hoc and sensor networks, Springer (pp. 1–30).Google Scholar
  22. 22.
    Aschenbruck, N., Munjal, A., & Camp, T. (2011). Trace-based mobility modeling for multi-hop wireless networks. Computer Communications, 34(6), 704–714.CrossRefGoogle Scholar
  23. 23.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the Lèvy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 19(3), 630–643.CrossRefGoogle Scholar
  24. 24.
    Lee, K., Hong, S., Kim, S. J., Rhee, I., & Chong, S. (2012). SLAW: Self-similar least-action human walk. IEEE/ACM Transactions on Networking, 20(2), 515–529.CrossRefGoogle Scholar
  25. 25.
    Vukadinovic, V., Dreier, F., & Mangold, S. (2012). Impact of human mobility on wireless ad hoc networking in entertainment parks. Ad Hoc Networks, 12(1), 17–34.Google Scholar
  26. 26.
    Wang, B., Lim, H. B., & Ma, D. (2009). A survey of movement strategies for improving network coverage in wireless sensor networks. Computer Communications, 32(13–14), 1427–1436.CrossRefGoogle Scholar
  27. 27.
    Di Francesco, M., Das, S. K., & Anastasi, G. (2011). Data collection in wireless sensor networks with mobile elements: A survey. ACM Transactions on Sensor Networks, 8(1), 1–31.CrossRefGoogle Scholar
  28. 28.
    Zhu, C., Shu, L., Hara, T., Wang, L., Nishio, S., & Yang, L. T. (2011). A survey on communication and data management issues in mobile sensor networks. Wireless Communications and Mobile Computing.Google Scholar
  29. 29.
    Anastasi, G., Borgia, E., Conti, M., & Gregori, E. (2011). A hybrid adaptive protocol for reliable data delivery in WSNs with multiple mobile sinks. The Computer Journal, 54(2), 213–229.CrossRefGoogle Scholar
  30. 30.
    Turgut, D., & Bölöni, L. (2008). Three heuristics for transmission scheduling in sensor networks with multiple mobile sinks. In Proceedings of international workshop on agent technology for sensor networks (ATSN-08), in conjunction with the seventh joint conference on autonomous and multi-agent systems (AAMAS 2008) (pp. 1–8).Google Scholar
  31. 31.
    Turgut, D., & Bölöni, L. (2011). Heuristic approaches for transmission scheduling in sensor networks with multiple mobile sinks. The Computer Journal, 54(3), 332–344.CrossRefGoogle Scholar
  32. 32.
    Bölöni, L., & Turgut, D. (2008). Should I send now or send later? A decision-theoretic approach to transmission scheduling in sensor networks with mobile sinks. Special Issue of Wiley’s Wireless Communications and Mobile Computing Journal (WCMC) on Mobility Management and Wireless Access, 8(3), 385–403.CrossRefGoogle Scholar
  33. 33.
    Luo, J., Panchard, J., Pirkowski, M., Grossglauser, M., & pierre Hubaux, J. (2006). MobiRoute: Routing towards a mobile sink for improving lifetime in sensor networks. In Proceedings of the IEEE/ACM DCOSS’06 (pp. 480–497).Google Scholar
  34. 34.
    Awwad, S. A., Ng, C. K., Noordin, N. K., & Rasid, M. F. (2011). Cluster based routing protocol for mobile nodes in wireless sensor network. Wireless Personal Communications, 61(2), 251–281.CrossRefGoogle Scholar
  35. 35.
    Kanai, H., Koizumi, Y., Ohsaki, H., & Imase, M. (2012). Gradient-based routing in delay tolerant mobile sensor networks incorporating node mobility. In Proceedings of the CCNC’12 (pp. 235–239).Google Scholar
  36. 36.
    Zappi, P., Bales, E., Park, J.-H., Griswold, W., & Rosing, T. (2012). The CitiSense air quality monitoring mobile sensor node. In Proceedings of the IPSN’12 workshop on mobile sensing, (pp. 1–5).Google Scholar
  37. 37.
    Akbas, M., Brust, M., & Turgut, D. (2011). SOFROP: self-organizing and fair routing protocol for wireless networks with mobile sensors and stationary actors. Special Issue of Elsevier’s Computer Communications Journal on Specialized Routing and Node Placement Protocols for Emerging Wireless Ad Hoc Networks, 34(18), 2135–2146.Google Scholar
  38. 38.
    Luo, R., & Chen, O. (2012). Mobile sensor node deployment and asynchronous power management for wireless sensor networks. IEEE Transactions on Industrial Electronics, 59(5), 2377–2385.CrossRefMathSciNetGoogle Scholar
  39. 39.
    Akbas, M., Solmaz, G., & Turgut, D. (2012). Actor positioning based on molecular geometry in aerial sensor networks. In Proceedings of the IEEE ICC’12 (pp. 508–512).Google Scholar
  40. 40.
    Sun, Z., Akyildiz, I., & Hancke, G. (2011). Dynamic connectivity in wireless underground sensor networks. IEEE Transactions on Wireless Communications, 10(12), 4334–4344.CrossRefGoogle Scholar
  41. 41.
    Erol Kantarci, M., Oktug, S., Vieira, L., & Gerla, M. (2011). Performance evaluation of distributed localization techniques for mobile underwater acoustic sensor networks. Ad Hoc Networks, 9(1), 61–72.CrossRefGoogle Scholar
  42. 42.
    Younis, M., & Akkaya, K. (2008). Strategies and techniques for node placement in wireless sensor networks: A survey. Ad Hoc Networks, 6(4), 621–655.CrossRefGoogle Scholar
  43. 43.
    Vincze, Z., Fodor, K., Vida, R., & Vidács, A. (2006). Electrostatic modelling of multiple mobile sinks in wireless sensor networks. In Proceedings of the IFIP networking workshop on performance control in wireless sensor networks (pp. 30–37).Google Scholar
  44. 44.
    Wang, Y.-C., Wu, F.-J., & Tseng, Y.-C. (2012). Mobility management algorithms and applications for mobile sensor networks. Wireless Communications and Mobile Computing, 12(1), 7–21.CrossRefGoogle Scholar
  45. 45.
    Melodia, T., Pompili, D., & Akyldiz, I.F. (2010). Handling mobility in wireless sensor and actor networks. IEEE Transactions on Mobile Computing, 9(2), 160–173.CrossRefGoogle Scholar
  46. 46.
    Vincze, Z., Vass, D., Vida, R., Vidács, A., & Telcs, A. (2006). Adaptive sink mobility in event-driven multi-hop wireless sensor networks. In Proceedings of the InterSense’06.Google Scholar
  47. 47.
    Angelopoulos, C.-M., Nikoletseas, S., Patroumpa, D., & Rolim, J. (2010). Coverage-adaptive random walks for fast sensory data collection. In Proceedings of the ADHOC-NOW’10 (pp. 81–94).Google Scholar
  48. 48.
    Solmaz, G., Akbas, M., & Turgut, D. (2012). Modeling visitor movement in theme parks. In Proceedings of the IEEE LCN’12 (pp. 36–43).Google Scholar
  49. 49.
    Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the ICKDDM’96 (pp. 226–231).Google Scholar
  50. 50.
    Boukerche, A., Turgut, B., Aydin, N., Ahmad, M., Bölöni, L., & Turgut, D. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks (Elsevier), 55(13), 3032–3080.CrossRefGoogle Scholar
  51. 51.
  52. 52.
    Wanhill, S. (2006) Theme parks: Their development and operation. In Proceedings of the CAUTHE’06 (pp. 1889–1921).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of Central FloridaOrlandoUSA

Personalised recommendations