Skip to main content
Log in

A hop-count based positioning algorithm for wireless ad-hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

We propose a range-free localization algorithm for a wireless ad-hoc network utilizing the hop-count metric’s ability to indicate proximity to anchors (i.e., nodes with known positions). In traditional sense, hop-count generally means the number of intermediate routers a datagram has to go through between its source and the destination node. We analytically show that hop-count could be used to indicate proximity relative to an anchor node. Our proposed algorithm is computationally feasible for resource constrained wireless ad-hoc nodes, and gives reasonable accuracy. We perform both real experiments and simulations to evaluate the algorithm’s performance. Experimental results show that our algorithm outperforms similar proximity based algorithms utilizing received signal strength and expected transmission count. We also analyze the impact of various parameters like the number of anchor nodes, placements of anchor nodes and varying transmission powers of the nodes on the hop-count based localization algorithm’s performance through simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  2. Villafuerte, F. L., Schiller, J., Tapia, E., Ramz, M., & Valdemar, E. Evaluating parameters for localization in wireless sensor networks: A survey. In 4th International congress on electronics and biomedical engineering, computer science and informatics (CONCIBE 2008). Guadalajara, Mexico, 2008.

  3. Enge, P., & Misra, P. (1999). Special issue on GPS: The global positioning system. Proceedings of the IEEE, 87, 3–172.

    Article  Google Scholar 

  4. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5), 28–34.

    Article  Google Scholar 

  5. Wong, M., & Aksoy, D. (2009). QUAD: Quadrant-based relative location estimates for representative topologies in wireless sensor networks. Computer Networks, 53(12), 1967–1979.

    Article  MATH  Google Scholar 

  6. Merkel, S., Mostaghim, S., & Schmeck, H. (2012). Distributed geometric distance estimation in ad hoc networks. In X.-Y. Li, S. Papavassiliou, & S. Ruehrup (Eds.), Ad-hoc, mobile, and wireless networks, volume 7363 of lecture notes in computer science (pp. 28–41). Berlin, Heidelberg: Springer.

  7. Rappaport, T. S. (1996). Wireless communications—principles and practice. Upper Saddle River: Prentice Hall.

    Google Scholar 

  8. Savvides, A., Han, C. C., & Strivastava, M. B. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th annual international conference on mobile computing and networking, MobiCom ’01, New York, NY, USA, pp. 166–179.

  9. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes in large scale sensor networks. In Proc. ACM/IEEE Mobicom’03, pp. 81–95.

  10. Johnson, D. B. (1994). Routing in ad hoc networks of mobile hosts. In Proceedings of the IEEE workshop on mobile computing systems and applications, pp. 158–163.

  11. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. SIGCOMM Computer Communication Review, 24(4), 234–244.

    Article  Google Scholar 

  12. Jacquet, P., Mühlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L. (2001). Optimized link state routing protocol for ad hoc networks. In Proceedings of IEEE INMIC 2001, pp. 62–68.

  13. Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the 2nd IEEE workshop on mobile computing systems and applications, pp. 90–100.

  14. Nicolescu, D., & Nath, B. (2003). DV based positioning in ad hoc networks. Journal of Telecommunications Systems, 22, 267–280.

    Google Scholar 

  15. Hossain, A., Mekbungwan, P., Kanchanasut, K. (2012). An ETX based positioning system for wireless ad-hoc networks. In Journal of Telecommunications Systems, volume 73 of the lecture notes of ICST (LNICST), pp. 174–185.

  16. Want, R., Hopper, A., Falcão, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems, 10, 91–102.

    Article  Google Scholar 

  17. Ward, A., Jones, A., & Hopper, A. (1997). A new location technique for the active office. IEEE Personal Communications, 4(5), 42–47.

    Article  Google Scholar 

  18. Priyantha, N., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system. In Proceedings of ACM MobiCom’00, Boston, MA, pp. 32–43.

  19. Boccadoro, M., De Angelis, G., & Valigi, P. (2012). TDOA positioning in NLOS scenarios by particle filtering. Wireless Networks, 18(5), 579–589.

    Article  Google Scholar 

  20. Yedavalli, K., Krishnamachari, B., Ravula, S., & Srinivasan, B. (2005). Ecolocation: A sequence based technique for RF localization in wireless sensor networks. In Proceeding of the ISPN’05.

  21. Gopakumar, A., & Jacob, L. (2011). Power-aware range-free wireless sensor network localization using neighbor distance distribution. Wireless Communications and Mobile Computing, 13, 460–482.

    Google Scholar 

  22. Lim, H., Kung, L. C., Hou, J., & Luo, H. (2010). Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure. Wireless Networks, 16(2), 405–420.

    Article  Google Scholar 

  23. Hossain, A. M., Jin, Y., Soh, W. S., & Van, H. N. (2013). SSD: A robust RF location fingerprint addressing mobile devices’ heterogeneity. IEEE Transactions on Mobile Computing, 12, 65–77.

    Article  Google Scholar 

  24. Nagpal, R. (1999). Organizing a global coordinate system from local information on an amorphous computer. Tech. Rep. A.I. Memo 1666, MIT A.I. Laboratory.

  25. Wu, H., Wang, C., & Tzeng, N. F. (2005). Novel self-configurable positioning technique for multi-hop wireless networks. IEEE/ACM Transactions on Networking, 13(3), 609–621.

    Article  Google Scholar 

  26. Ma, D., Er, M., Wang, B., & Lim, H. (2011). Range-free wireless sensro networks localization based on hop-count quantization. Telecommunication Systems, 50, 199–213.

    Google Scholar 

  27. Rico, R., & Stefan, T. (2011). Node degree based improved hop count weighted centroid localization algorithm. In 17th GI/ITG conference on communication in distributed systems (KiVS 2011), volume 17 of open access series in informatics (OASIcs), Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 194–199.

  28. Sit, T. C. H., Liu, Z., Ang, M. H. Jr., & Seah, W. K. G. (2007). Multi-robot mobility enhanced hop-count based localization in ad hoc networks. Robotics and Autonomous Systems, 55(3), 244–252.

    Article  Google Scholar 

  29. Lee, S., Kim, E., Kim, C., & Kim, K. (2008). Hop-count based localization using geometric constraints in wireless sensor networks. In Communications, 2008. APCC 2008. 14th Asia-Pacific conference on 1–5.

  30. Wong, S. Y., Lim, J. G., Rao, S., & Seah, W. (2005). Density-aware hop-count localization (DHL) in wireless sensor networks with variable density. In IEEE WCNC, pp. 1848–1853.

  31. De Couto, D. S. J., Aguayo, D., Bicket, J., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of MobiCom’03, New York, NY, USA, pp. 134–146.

  32. Kurose, J.F., & Ross, K.W. (2009). Computer networking: A top-down approach. Reading: Addison-Wesley.

    Google Scholar 

  33. Clark, B. N., Colbourn, C. J., & Johnson, D. S. (1991). Unit disk graphs. Discrete Mathematics, 86(1–3), 165–177.

    MathSciNet  Google Scholar 

  34. olsrd An adhoc wireless mesh routing daemon. http://www.olsr.org.

  35. Tcpdump TCPDUMP/LIBPCAP public repository http://www.tcpdump.org/

  36. Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE INFOCOM,Tel Aviv, Israel, pp. 775–784.

  37. Kaemarungsi, K., & Krishnamurthy, P. (2004). Properties of indoor received signal strength for WLAN location fingerprinting. In Proceedings of the MobiQuitous’04, San Diego, CA, pp. 14–23

  38. Hossain, A., & Soh, W. S. (2010). Cramer-Rao bound analysis of localization using signal strength difference as location fingerprint. In IEEE INFOCOM, pp. 1–9.

  39. Jain, A. K., Duin, R., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.

    Article  Google Scholar 

  40. Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2003). Anchor-free distributed localization in sensor networks. In Proceeding of SenSys’03, pp. 340–341.

Download references

Acknowledgments

This work has been supported by Intelligent Transportation System Cluster of the National Science and Technology Development Agency (NSTDA), Thailand and the THNIC Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. M. Mahtab Hossain.

Additional information

This work was done while A. K. M. Mahtab Hossain was working at intERLab, Asian Institute of Technology, Thailand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurung, S., Hossain, A.K.M.M. & Kanchanasut, K. A hop-count based positioning algorithm for wireless ad-hoc networks. Wireless Netw 20, 1431–1444 (2014). https://doi.org/10.1007/s11276-013-0685-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0685-7

Keywords

Navigation