Advertisement

Wireless Networks

, Volume 20, Issue 6, pp 1431–1444 | Cite as

A hop-count based positioning algorithm for wireless ad-hoc networks

  • Sarita Gurung
  • A. K. M. Mahtab Hossain
  • Kanchana Kanchanasut
Article

Abstract

We propose a range-free localization algorithm for a wireless ad-hoc network utilizing the hop-count metric’s ability to indicate proximity to anchors (i.e., nodes with known positions). In traditional sense, hop-count generally means the number of intermediate routers a datagram has to go through between its source and the destination node. We analytically show that hop-count could be used to indicate proximity relative to an anchor node. Our proposed algorithm is computationally feasible for resource constrained wireless ad-hoc nodes, and gives reasonable accuracy. We perform both real experiments and simulations to evaluate the algorithm’s performance. Experimental results show that our algorithm outperforms similar proximity based algorithms utilizing received signal strength and expected transmission count. We also analyze the impact of various parameters like the number of anchor nodes, placements of anchor nodes and varying transmission powers of the nodes on the hop-count based localization algorithm’s performance through simulation.

Keywords

Positioning system Ad-hoc networks Localization algorithm Proximity based localization Hop-count Optimized link state routing (OLSR) 

Notes

Acknowledgments

This work has been supported by Intelligent Transportation System Cluster of the National Science and Technology Development Agency (NSTDA), Thailand and the THNIC Foundation.

References

  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRefGoogle Scholar
  2. 2.
    Villafuerte, F. L., Schiller, J., Tapia, E., Ramz, M., & Valdemar, E. Evaluating parameters for localization in wireless sensor networks: A survey. In 4th International congress on electronics and biomedical engineering, computer science and informatics (CONCIBE 2008). Guadalajara, Mexico, 2008.Google Scholar
  3. 3.
    Enge, P., & Misra, P. (1999). Special issue on GPS: The global positioning system. Proceedings of the IEEE, 87, 3–172.CrossRefGoogle Scholar
  4. 4.
    Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5), 28–34.CrossRefGoogle Scholar
  5. 5.
    Wong, M., & Aksoy, D. (2009). QUAD: Quadrant-based relative location estimates for representative topologies in wireless sensor networks. Computer Networks, 53(12), 1967–1979.CrossRefzbMATHGoogle Scholar
  6. 6.
    Merkel, S., Mostaghim, S., & Schmeck, H. (2012). Distributed geometric distance estimation in ad hoc networks. In X.-Y. Li, S. Papavassiliou, & S. Ruehrup (Eds.), Ad-hoc, mobile, and wireless networks, volume 7363 of lecture notes in computer science (pp. 28–41). Berlin, Heidelberg: Springer.Google Scholar
  7. 7.
    Rappaport, T. S. (1996). Wireless communications—principles and practice. Upper Saddle River: Prentice Hall.Google Scholar
  8. 8.
    Savvides, A., Han, C. C., & Strivastava, M. B. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th annual international conference on mobile computing and networking, MobiCom ’01, New York, NY, USA, pp. 166–179.Google Scholar
  9. 9.
    He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes in large scale sensor networks. In Proc. ACM/IEEE Mobicom’03, pp. 81–95.Google Scholar
  10. 10.
    Johnson, D. B. (1994). Routing in ad hoc networks of mobile hosts. In Proceedings of the IEEE workshop on mobile computing systems and applications, pp. 158–163.Google Scholar
  11. 11.
    Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. SIGCOMM Computer Communication Review, 24(4), 234–244.CrossRefGoogle Scholar
  12. 12.
    Jacquet, P., Mühlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L. (2001). Optimized link state routing protocol for ad hoc networks. In Proceedings of IEEE INMIC 2001, pp. 62–68.Google Scholar
  13. 13.
    Perkins, C. E., & Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the 2nd IEEE workshop on mobile computing systems and applications, pp. 90–100.Google Scholar
  14. 14.
    Nicolescu, D., & Nath, B. (2003). DV based positioning in ad hoc networks. Journal of Telecommunications Systems, 22, 267–280.Google Scholar
  15. 15.
    Hossain, A., Mekbungwan, P., Kanchanasut, K. (2012). An ETX based positioning system for wireless ad-hoc networks. In Journal of Telecommunications Systems, volume 73 of the lecture notes of ICST (LNICST), pp. 174–185.Google Scholar
  16. 16.
    Want, R., Hopper, A., Falcão, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems, 10, 91–102.CrossRefGoogle Scholar
  17. 17.
    Ward, A., Jones, A., & Hopper, A. (1997). A new location technique for the active office. IEEE Personal Communications, 4(5), 42–47.CrossRefGoogle Scholar
  18. 18.
    Priyantha, N., Chakraborty, A., & Balakrishnan, H. (2000). The cricket location-support system. In Proceedings of ACM MobiCom’00, Boston, MA, pp. 32–43.Google Scholar
  19. 19.
    Boccadoro, M., De Angelis, G., & Valigi, P. (2012). TDOA positioning in NLOS scenarios by particle filtering. Wireless Networks, 18(5), 579–589.CrossRefGoogle Scholar
  20. 20.
    Yedavalli, K., Krishnamachari, B., Ravula, S., & Srinivasan, B. (2005). Ecolocation: A sequence based technique for RF localization in wireless sensor networks. In Proceeding of the ISPN’05.Google Scholar
  21. 21.
    Gopakumar, A., & Jacob, L. (2011). Power-aware range-free wireless sensor network localization using neighbor distance distribution. Wireless Communications and Mobile Computing, 13, 460–482.Google Scholar
  22. 22.
    Lim, H., Kung, L. C., Hou, J., & Luo, H. (2010). Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure. Wireless Networks, 16(2), 405–420.CrossRefGoogle Scholar
  23. 23.
    Hossain, A. M., Jin, Y., Soh, W. S., & Van, H. N. (2013). SSD: A robust RF location fingerprint addressing mobile devices’ heterogeneity. IEEE Transactions on Mobile Computing, 12, 65–77.CrossRefGoogle Scholar
  24. 24.
    Nagpal, R. (1999). Organizing a global coordinate system from local information on an amorphous computer. Tech. Rep. A.I. Memo 1666, MIT A.I. Laboratory.Google Scholar
  25. 25.
    Wu, H., Wang, C., & Tzeng, N. F. (2005). Novel self-configurable positioning technique for multi-hop wireless networks. IEEE/ACM Transactions on Networking, 13(3), 609–621.CrossRefGoogle Scholar
  26. 26.
    Ma, D., Er, M., Wang, B., & Lim, H. (2011). Range-free wireless sensro networks localization based on hop-count quantization. Telecommunication Systems, 50, 199–213.Google Scholar
  27. 27.
    Rico, R., & Stefan, T. (2011). Node degree based improved hop count weighted centroid localization algorithm. In 17th GI/ITG conference on communication in distributed systems (KiVS 2011), volume 17 of open access series in informatics (OASIcs), Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 194–199.Google Scholar
  28. 28.
    Sit, T. C. H., Liu, Z., Ang, M. H. Jr., & Seah, W. K. G. (2007). Multi-robot mobility enhanced hop-count based localization in ad hoc networks. Robotics and Autonomous Systems, 55(3), 244–252.CrossRefGoogle Scholar
  29. 29.
    Lee, S., Kim, E., Kim, C., & Kim, K. (2008). Hop-count based localization using geometric constraints in wireless sensor networks. In Communications, 2008. APCC 2008. 14th Asia-Pacific conference on 1–5.Google Scholar
  30. 30.
    Wong, S. Y., Lim, J. G., Rao, S., & Seah, W. (2005). Density-aware hop-count localization (DHL) in wireless sensor networks with variable density. In IEEE WCNC, pp. 1848–1853.Google Scholar
  31. 31.
    De Couto, D. S. J., Aguayo, D., Bicket, J., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of MobiCom’03, New York, NY, USA, pp. 134–146.Google Scholar
  32. 32.
    Kurose, J.F., & Ross, K.W. (2009). Computer networking: A top-down approach. Reading: Addison-Wesley.Google Scholar
  33. 33.
    Clark, B. N., Colbourn, C. J., & Johnson, D. S. (1991). Unit disk graphs. Discrete Mathematics, 86(1–3), 165–177.MathSciNetGoogle Scholar
  34. 34.
    olsrd An adhoc wireless mesh routing daemon. http://www.olsr.org.
  35. 35.
    Tcpdump TCPDUMP/LIBPCAP public repository http://www.tcpdump.org/
  36. 36.
    Bahl, P., & Padmanabhan, V. N. (2000). RADAR: An in-building RF-based user location and tracking system. In Proceedings of the IEEE INFOCOM,Tel Aviv, Israel, pp. 775–784.Google Scholar
  37. 37.
    Kaemarungsi, K., & Krishnamurthy, P. (2004). Properties of indoor received signal strength for WLAN location fingerprinting. In Proceedings of the MobiQuitous’04, San Diego, CA, pp. 14–23Google Scholar
  38. 38.
    Hossain, A., & Soh, W. S. (2010). Cramer-Rao bound analysis of localization using signal strength difference as location fingerprint. In IEEE INFOCOM, pp. 1–9.Google Scholar
  39. 39.
    Jain, A. K., Duin, R., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.CrossRefGoogle Scholar
  40. 40.
    Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2003). Anchor-free distributed localization in sensor networks. In Proceeding of SenSys’03, pp. 340–341.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sarita Gurung
    • 1
  • A. K. M. Mahtab Hossain
    • 2
  • Kanchana Kanchanasut
    • 1
  1. 1.intERLab, Asian Institute of TechnologyPathumthaniThailand
  2. 2.Department of Computer ScienceUniversity College CorkCorkIreland

Personalised recommendations