Wireless Networks

, Volume 20, Issue 6, pp 1409–1420 | Cite as

A green radio resource allocation scheme for LTE-A downlink systems with CoMP transmission

  • Wen-Ching ChungEmail author
  • Chung-Ju Chang
  • Hsin-Ying Teng


In this paper, we propose a green radio resource allocation (GRRA) scheme for LTE-advanced downlink systems with coordinated multi-point (CoMP) transmission to support multimedia traffic. The GRRA scheme defines a green radio utility function, which is composed of the required transmission power, assigned modulation order, and the number of coordinated transmission nodes. By maximizing this utility function, the GRRA scheme can effectively save transmission power, enhance spectrum efficiency, and guarantee quality-of-service requirements. The simulation results show that when the traffic load intensity is greater than 0.7, the GRRA scheme can save transmission power by more than 33.9 and 40.1 %, as compared with the conventional adaptive radio resource allocation (ARRA) scheme (Tsai et al. in IEEE Trans Wireless Commun 7(5):1734–1743, 2008) with CoMP and the utility-based radio resource allocation (URRA) scheme (Katoozian et al. in IEEE Trans Wireless Commun 8(1):66–71, 2009) with CoMP, respectively. Besides, it enhances the system throughput by approximately 5.5 % and improves Jain’s fairness index for best effort users by more than 155 % over these two ARRA and URRA schemes.


Green radio Resource allocation CoMP LTE-A QoS Fairness 



The authors would like to give thanks the anonymous reviewers for their suggestions to improve the presentation of the paper. The work was supported by National Science Council (NSC), Taiwan, under contract number NSC 100-2221-E-009-102-MY3, and the Ministry of Education, Taiwan, under the ATU plan.


  1. 1.
    Niu, Z., Wu, Y., Gong, J., & Yang, Z. (2010). Cell zooming for cost-efficient green cellular networks. IEEE Communications Magazine, 48(11), 74–79.CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Zhang, S., Xu, S., & Li, G. Y. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.CrossRefGoogle Scholar
  3. 3.
    Han, C., Harrold, T., Armour, S., Krikidis, I., Videv, S., Grant, P. M., et al. (2011). Green radio: Radio techniques to enable energy-efficient wireless networks. IEEE Communications Magazine, 49(6), 46–54.CrossRefGoogle Scholar
  4. 4.
    Bogucka, H., & Conti, A. (2011). Degrees of freedom for energy savings in practical adaptive wireless systems. IEEE Communications Magazines, 49(6), 38–45.CrossRefGoogle Scholar
  5. 5.
    Wang, B., Wu, Y., Han, F., Yang, Y. H., & Liu, K. J. R. (2011). Green wireless communications: A time-reversal paradigm. IEEE Journal on Selected Areas in Communications, 29(8), 1698–1710.CrossRefGoogle Scholar
  6. 6.
    Ismail, M., & Zhuang, W. (2011). Network cooperation for energy saving in green radio communications. IEEE Wireless Communications, 18(5), 76–81.CrossRefGoogle Scholar
  7. 7.
    Parkvall, S., & Astely, D. (2009). The evolution of LTE towards IMT-advanced. Journal of Communications, 4(3), 146–154.CrossRefGoogle Scholar
  8. 8.
    3GPP TR36.913. (2008). Requirements for further advancements for EUTRA (LTE-advanced). 3rd Generation Partnership Project, Tech. Rep., June 2008.Google Scholar
  9. 9.
    Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology. IEEE Transactions on Wireless Communications, 17(3), 10–22.CrossRefGoogle Scholar
  10. 10.
    3GPP TR36.814 (2010). Evolved universal terrestrial radio access (E-UTRA); further advancements for E-UTRA physical layer aspects. 3rd Generation Partnership Project, Tech. Rep., Mar. 2010.Google Scholar
  11. 11.
    Andrews, J. G., Choi, W., & Heath, R. W. Jr. (2007). Overcoming interference in spatial multiplexing MIMO cellular networks. IEEE Transactions on Wireless Communications, 14(6), 95–104.CrossRefGoogle Scholar
  12. 12.
    Karakayali, M. K., Foschini, G. J., & Valenzuela, R. A. (2006). Network coordination for spectrally efficient communications in cellular systems. IEEE Transactions on Wireless Communications, 13(4), 56–61.CrossRefGoogle Scholar
  13. 13.
    Sawahashi, M., Kishiyama, Y., Morimoto, A., Nishikawa, D., & Tanno, M. (2010). Coordinated multipoint transmission/reception techniques for LTE-advanced. IEEE Transactions on Wireless Communications, 17(3), 26–34.CrossRefGoogle Scholar
  14. 14.
    Tölli, A., Codreanu, M., & Juntti, M. (2008). Cooperative MIMO–OFDM cellular system with soft handover between distributed base station antennas. IEEE Transactions on Wireless Communications, 7(4), 1428–1440.CrossRefGoogle Scholar
  15. 15.
    Gao, X., Li, A., & Kayama, H. (2009). Low-complexity downlink coordination scheme for multi-user CoMP in LTE-advanced system. IEEE PIMRC.Google Scholar
  16. 16.
    Fodor, G., Johansson, M., & Soldati, P. (2009). Near optimum power control under fairness constraints in CoMP systems. IEEE GLOBECOM.Google Scholar
  17. 17.
    Liu, J., Chang, Y., Pan, Q., Zhang, X., & Yang, D. (2010). A novel transmission scheme and scheduling algorithm for CoMP-SU–MIMO in LTE-A system. IEEE VTC-Spring.Google Scholar
  18. 18.
    Yu, J., Cai, Y., Ma, Y., Zhang, D., & Xu, Y. (2007). A cross-layer design of packet scheduling and resource allocation for multiuser MIMO–OFDM system. ICICS.Google Scholar
  19. 19.
    Tsai, C. F., Chang, C. J., Ren, F. C., & Yen, C. M. (2008). Adaptive radio resource allocation for downlink OFDMA/SDMA systems with multimedia traffic. IEEE Transactions on Wireless Communications, 7(5), 1734–1743.CrossRefGoogle Scholar
  20. 20.
    Katoozian, M., Navaie, K., & Yanikomeroglu, H. (2009). Utility-based adaptive radio resource allocation in OFDM wireless networks with traffic prioritization. IEEE Transactions on Wireless Communications, 8(1), 66–71.CrossRefGoogle Scholar
  21. 21.
    Yen, C. M., Chang, C. J., & Wang, L. C. (2010). A utility-based TMCR scheduling scheme for downlink MIMO/OFDMA systems. IEEE Transactions on Vehicular Technology, 59(8), 4105–4115.CrossRefGoogle Scholar
  22. 22.
    Jain, R. K., Chiu, D. M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation and shared computer system. Technical Report DEC-TR-301, Digital Equipment Corporation.Google Scholar
  23. 23.
    Rahman, M., Yanikomeroglu, H., & Wong, W. (2009). Interference avoidance with dynamic inter-cell coordination for downlink LTE system. IEEE WCNC, April 2009.Google Scholar
  24. 24.
    3GPP TR25.814. (2005). Physical layer aspects for evolved UTRA. 3rd Generation Partnership Project, Tech. Rep.Google Scholar
  25. 25.
    Rumney, M. (2009). LTE and the evolution to 4G wireless: Design and measurement challenges. New York: Wiley.Google Scholar
  26. 26.
    Hottinen, A., Tirkkonen, O., & Wichman, R. (2003). Multi-antenna transceiver techniques for 3G and beyond. New York: Wiley.CrossRefGoogle Scholar
  27. 27.
    Madan, R., Mehta, N. B., Molisch, A. F., & Zhang, J. (2008). Energy-efficient cooperative relaying over fading channels with simple relay selection. IEEE Transactions on Wireless Communications, 7(8), 3013–3025.CrossRefGoogle Scholar
  28. 28.
    Ngo, D. T., Tellambura, C., & Nguyen, H. H. (2010). Resource allocation for OFDMA-based cognitive radio multicast networks with primary user activity consideration. IEEE Transactions on Vehicular Technology, 59(4), 1668–1679.CrossRefGoogle Scholar
  29. 29.
    3GPP TR 25.996. (2010). Universal mobile telecommunications system (UMTS); spacial channel model for multiple input multiple output (MIMO) simulations. 3rd Generation Partnership Project, Tech. Rep., Jan. 2010.Google Scholar
  30. 30.
    WiMAX forum. (2007). Wimax system evaluation methodology. V.2.0. Tech. Rep., Dec. 2007.Google Scholar
  31. 31.
    3GPP TR 25.892. (2004). Feasibility study for OFDM for UTRAN enhancement. 3rd Generation Partnership Project, Tech. Rep., 2004.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Wen-Ching Chung
    • 1
    Email author
  • Chung-Ju Chang
    • 1
  • Hsin-Ying Teng
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations