Skip to main content

iVoIP: an intelligent bandwidth management scheme for VoIP in WLANs

Abstract

Voice over Internet Protocol (VoIP) has been widely used by many mobile consumer devices in IEEE 802.11 wireless local area networks (WLAN) due to its low cost and convenience. However, delays of all VoIP flows dramatically increase when network capacity is approached. Additionally, unfair traffic distribution between downlink and uplink flows in WLANs impacts the perceived VoIP quality. This paper proposes an intelligent bandwidth management scheme for VoIP services (iVoIP) that improves bandwidth utilization and provides fair downlink–uplink channel access. iVoIP is a cross-layer solution which includes two components: (1) iVoIP-Admission Control, which protects the quality of existing flows and increases the utilization of wireless network resources; (2) iVoIP-Fairness scheme, which balances the channel access opportunity between access point (AP) and wireless stations. iVoIP-Admission Control limits the number of VoIP flows based on an estimation of VoIP capacity. iVoIP-Fairness implements a contention window adaptation scheme at AP which uses stereotypes and considers several major quality of service parameters to balance the network access of downlink and uplink flows, respectively. Extensive simulations and real tests have been performed, demonstrating that iVoIP has both very good VoIP capacity estimation and admission control results. Additionally, iVoIP improves the downlink/uplink fairness level in terms of throughput, delay, loss, and VoIP quality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    Skype, Available [Online] http://www.skype.com.

  2. 2.

    Google Talk, Available [Online] http://www.google.com/talk.

  3. 3.

    Network Simulator NS-2. [Online]. Available: http://www.isi.edu/nsnam/ns/.

  4. 4.

    NOAH NS-2 extension, http://icapeople.epfl.ch/widmer/uwb/ns-2/noah/.

  5. 5.

    M. Fiore patch, http://www.telematica.polito.it/fiore.

References

  1. 1.

    Venkatesan, G. (2010). Multimedia streaming over 802.11 links [Industry Perspectives]. IEEE Wireless Communications, 17(2), 4–5.

    Article  Google Scholar 

  2. 2.

    Ericsson connectivity report, http://www.ericsson.com/res/thecompany/docs/corpinfo/reports/ericsson_connectivity_report_feb2011.pdf, February 2011.

  3. 3.

    Salkintzis, A. K., Pavlidou, F.-N., & Zhang, Q. (2008). Advances in wireless VoIP [Guest Editorial]. IEEE Communications Magazine, 46(1), 80–81.

    Article  Google Scholar 

  4. 4.

    Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 9(46), 59–67.

    Article  Google Scholar 

  5. 5.

    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2010). iPAS: An user perceived quality-based intelligent prioritized adaptive scheme for IPTV in wireless home networks. IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–6). Shanghai, China.

  6. 6.

    Lee, H., & Cho, D.-H. (2010). Capacity improvement and analysis of VoIP service in a cognitive radio system. IEEE Transactions on Vehicular Technology, 59(4), 1646–1651.

    Article  Google Scholar 

  7. 7.

    Huang, J., Xu, C., Duan, Q., Ma, Y., & Muntean, G.-M. (2012). Novel end-to-end quality of service provisioning algorithms for multimedia services in virtualization-based future internet. IEEE Transactions on Broadcasting, 58(4), 569–579.

    Article  Google Scholar 

  8. 8.

    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2009). iBE: A novel bandwidth estimation algorithm for multimedia services over IEEE 802.11 wireless networks. 12th IFIP/IEEE international conference on management of multimedia and mobile networks and services (MMNS) (pp. 69–80). Venice, Italy.

  9. 9.

    Pong, D., & Moors, T. (2003). Call admission control for IEEE 802.11 contention access mechanism. IEEE global communications conference (GLOBECOM) (pp. 174–178). San Francisco, CA.

  10. 10.

    Qaimkhani, I. A., & Hossain, E. (2008). Efficient silence suppression and call admission control through contention-free medium access for VoIP in WiFi networks. IEEE Communications Magazine, 46(1), 90–99.

    Article  Google Scholar 

  11. 11.

    Deng, D.-J., Ke, C.-H., Chao, H.-C., & Huang, Y.-M. (2010). On delay constrained CAC scheme and scheduling policy for CBR traffic in IEEE 802.11e wireless LANs. Wireless Communications and Mobile Computing, 10(11), 1509–1520.

    Article  Google Scholar 

  12. 12.

    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2010). iPAS: An user perceived quality-based intelligent prioritized adaptive scheme for IPTV in wireless home networks. IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–6). Shanghai, China.

  13. 13.

    Rodrigues, E. B., & Cavalcanti, F. R. P. (2008). QoS-driven adaptive congestion control for voice over IP in multiservice wireless cellular networks. IEEE Communications Magazine, 46(1), 100–107.

    Article  Google Scholar 

  14. 14.

    McGovern, P., Perry, P., Murphy, S., & Murphy, L. (2011). Endpoint-based call admission control and resource management for VoWLAN. IEEE Transactions on Mobile Computing, 10(5), 684–699.

    Article  Google Scholar 

  15. 15.

    Lin, P., Chou, W.-I., & Lin, T. (2011). Achieving airtime fairness of delay-sensitive applications in multirate IEEE 802.11 wireless LANs. IEEE Communications Magazine, 49(9), 169–175.

    Article  Google Scholar 

  16. 16.

    (2005). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment-quality of service enhancements. IEEE 802.11e, IEEE Standard for Information Technology.

  17. 17.

    Hirantha Sithira Abeysekera, B., Matsuda, T., & Takine, T. (2008). Dynamic contention window control mechanism to achieve fairness between uplink and downlink flows in IEEE 802.11 wireless LANs. IEEE Transactions on Wireless Communications, 7(9), 3517–3525.

    Article  Google Scholar 

  18. 18.

    Kashibuchi, K., Jamalipour, A., & Kato, N. (2010). Channel occupancy time based TCP rate control for improving fairness in IEEE 802.11 DCF. IEEE Transactions on Vehicular Technology, 59(6), 2974–2985.

    Article  Google Scholar 

  19. 19.

    Yun, S., Kim, H., Lee, H., & Kang, I. (2007). 100+ VoIP calls on 802.11b: The power of combining voice frame aggregation and uplink-downlink bandwidth control in wireless LANs. IEEE Journal on Selected Areas in Communications, 25(4), 689–698.

    Article  Google Scholar 

  20. 20.

    Lim, W.-S., Kim, D.-W., & Suh, Y.-J. (2011). Achieving fairness between uplink and downlink flows in error-prone WLANs. IEEE Communications Letters, 15(8), 822–824.

    Article  Google Scholar 

  21. 21.

    Chou, C. T., Shin, K. G., & Shankar, N. (2006). Contention-based airtime usage control in multirate IEEE 802.11 wireless LANs. IEEE/ACM Transactions on Networks, 14(6), 1179–1192.

    Article  Google Scholar 

  22. 22.

    Leith, D. J., Clifford, P., Malone, D., & Ng, A. (2005). TCP fairness in 802.11e WLANs. IEEE Communications Letters, 9(11), 964–966.

    Article  Google Scholar 

  23. 23.

    Rich, E. (1979). User modeling via stereotypes. Cognitive Science Journal, 3(4), 329–354.

    Article  Google Scholar 

  24. 24.

    Muntean, C. H., Muntean, G. M., McManis, J., & Cristea, A. I. (2007). Quality of experience-LAOS: Create once, use many, use anywhere. International Journal of Learning Technology, 3(3), 209–229.

    Google Scholar 

  25. 25.

    Muntean, C. H., & McManis, J. (2004). A QoS-aware adaptive web-based system. IEEE International Conference on Communications (ICC) (pp. 2204–2208). Paris, France.

  26. 26.

    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal of Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  27. 27.

    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2012). A novel bandwidth estimation algorithm for IEEE 802.11 TCP data transmissions. IEEE wireless communications and networking conference (WCNC) workshop on wireless vehicular communications and networks (pp. 377–382). Paris, France.

  28. 28.

    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2012). MBE: Model-based bandwidth estimation for IEEE 802.11 data transmissions. IEEE Transactions on Vehicular Technology, 61(5), 2158–2171.

    Article  Google Scholar 

  29. 29.

    Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (2003). RTP: A transport protocol for real-time applications. Internet Engineering Task Force, RFC3550.

  30. 30.

    (2009). IEEE 802.21-2008, standard for local and metropolitan area networks-part 21: Media independent handover services. IEEE Computer Society.

  31. 31.

    Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (2000). Modeling TCP reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133–145.

    Article  Google Scholar 

  32. 32.

    Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2004). Performance analysis of IEEE 802.11 DCF in presence of transmission errors. IEEE International Conf. Communications (ICC) (pp. 3854–3858). Paris, France.

  33. 33.

    (1988). Pulse code modulation (PCM) of voice frequencies. ITU-T Recommendation G.711.

  34. 34.

    Oouch, H., Takenaga, T., Sugawara, H., & Masugi, M. (2002). Study on appropriate voice data length of IP packets for VoIP network adjustment. In IEEE global telecommunications conference (GLOBECOM) (pp. 1618–1622). Taiwan, China.

  35. 35.

    Hui, J., & Devetsikiotis, M. (2008). The use of metamodeling for VoIP over WiFi capacity evaluation. IEEE Transactions on Wireless Communications, 7(1), 1–5.

    Article  Google Scholar 

  36. 36.

    International Telecommunication Union. (1996). Coding of speech at 8 kbps using conjugate structure algebraic-codec-excited linear-prediction. ITU-T Recommendation G. 729.

  37. 37.

    Andersen, S., Duric, A., Astrom, H., Hagen, R., Kleijn, W., & Linden, J. (2004). Internet low bit rate codec (iLBC).

  38. 38.

    Muntean, C. H., & McManis, J. (2004). A QoS-aware adaptive web-based system. IEEE international conference communications (ICC) (pp. 2204–2208). Paris, France.

  39. 39.

    Recommendation ITU-T P.800. (1996). Methods for subjective determination of transmission quality. ITU-T, Geneva.

  40. 40.

    Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (1996). RTP: A transport protocol for real-time applications. RFC1889, http://www.ieft.org/rfc/rfc1889.txt.

  41. 41.

    Xia, Q., Jin, X., & Hamdi, M. (2008). Active queue management with dual virtual proportional integral queues for TCP uplink/downlink fairness in infrastructure WLANs. IEEE Transactions on Wireless Communications, 7(6), 2261–2271.

    Article  Google Scholar 

  42. 42.

    Haykin, S. (2000). Communication systems. Hoboken, NJ: Wiley.

    Google Scholar 

  43. 43.

    Comer, D. E. (2006). Internetworking with TCP/IP (5th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  44. 44.

    Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networks, 1(4), 397–413.

    Article  Google Scholar 

  45. 45.

    SIPp. [Online]. Available: http://sipp.sourceforge.net.

  46. 46.

    Wireshark. [Online]. Available: http://www.wireshark.org.

  47. 47.

    (1999). IEEE 802.11b, part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz band, supplement to IEEE 802.11 Std.

  48. 48.

    ITU-T Rec.G.114. (2003). One-way transmission time.

  49. 49.

    Jain, R., Chiu, D. M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared systems. Digital Equipment Corporation, Technical Report, DEC-TR-301.

  50. 50.

    ITU-T Recommendation G.107. (1998). The E-Model, a computational model for use in transmission planning.

  51. 51.

    Cole, R. G., & Rosenbluth, J. H. (2001). Voice over IP performance monitoring. Computer Communication Review, 31(2), 9–24.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Enterprise Ireland Innovation Partnership programme.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenhui Yuan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, Z., Muntean, GM. iVoIP: an intelligent bandwidth management scheme for VoIP in WLANs. Wireless Netw 20, 457–473 (2014). https://doi.org/10.1007/s11276-013-0616-7

Download citation

Keywords

  • VoIP
  • QoS
  • Admission control
  • Fairness
  • Downlink/uplink
  • IEEE 802.11