Wireless Networks

, Volume 20, Issue 3, pp 457–473 | Cite as

iVoIP: an intelligent bandwidth management scheme for VoIP in WLANs

Article

Abstract

Voice over Internet Protocol (VoIP) has been widely used by many mobile consumer devices in IEEE 802.11 wireless local area networks (WLAN) due to its low cost and convenience. However, delays of all VoIP flows dramatically increase when network capacity is approached. Additionally, unfair traffic distribution between downlink and uplink flows in WLANs impacts the perceived VoIP quality. This paper proposes an intelligent bandwidth management scheme for VoIP services (iVoIP) that improves bandwidth utilization and provides fair downlink–uplink channel access. iVoIP is a cross-layer solution which includes two components: (1) iVoIP-Admission Control, which protects the quality of existing flows and increases the utilization of wireless network resources; (2) iVoIP-Fairness scheme, which balances the channel access opportunity between access point (AP) and wireless stations. iVoIP-Admission Control limits the number of VoIP flows based on an estimation of VoIP capacity. iVoIP-Fairness implements a contention window adaptation scheme at AP which uses stereotypes and considers several major quality of service parameters to balance the network access of downlink and uplink flows, respectively. Extensive simulations and real tests have been performed, demonstrating that iVoIP has both very good VoIP capacity estimation and admission control results. Additionally, iVoIP improves the downlink/uplink fairness level in terms of throughput, delay, loss, and VoIP quality.

Keywords

VoIP QoS Admission control Fairness Downlink/uplink IEEE 802.11 

References

  1. 1.
    Venkatesan, G. (2010). Multimedia streaming over 802.11 links [Industry Perspectives]. IEEE Wireless Communications, 17(2), 4–5.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Salkintzis, A. K., Pavlidou, F.-N., & Zhang, Q. (2008). Advances in wireless VoIP [Guest Editorial]. IEEE Communications Magazine, 46(1), 80–81.CrossRefGoogle Scholar
  4. 4.
    Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 9(46), 59–67.CrossRefGoogle Scholar
  5. 5.
    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2010). iPAS: An user perceived quality-based intelligent prioritized adaptive scheme for IPTV in wireless home networks. IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–6). Shanghai, China.Google Scholar
  6. 6.
    Lee, H., & Cho, D.-H. (2010). Capacity improvement and analysis of VoIP service in a cognitive radio system. IEEE Transactions on Vehicular Technology, 59(4), 1646–1651.CrossRefGoogle Scholar
  7. 7.
    Huang, J., Xu, C., Duan, Q., Ma, Y., & Muntean, G.-M. (2012). Novel end-to-end quality of service provisioning algorithms for multimedia services in virtualization-based future internet. IEEE Transactions on Broadcasting, 58(4), 569–579.CrossRefGoogle Scholar
  8. 8.
    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2009). iBE: A novel bandwidth estimation algorithm for multimedia services over IEEE 802.11 wireless networks. 12th IFIP/IEEE international conference on management of multimedia and mobile networks and services (MMNS) (pp. 69–80). Venice, Italy.Google Scholar
  9. 9.
    Pong, D., & Moors, T. (2003). Call admission control for IEEE 802.11 contention access mechanism. IEEE global communications conference (GLOBECOM) (pp. 174–178). San Francisco, CA.Google Scholar
  10. 10.
    Qaimkhani, I. A., & Hossain, E. (2008). Efficient silence suppression and call admission control through contention-free medium access for VoIP in WiFi networks. IEEE Communications Magazine, 46(1), 90–99.CrossRefGoogle Scholar
  11. 11.
    Deng, D.-J., Ke, C.-H., Chao, H.-C., & Huang, Y.-M. (2010). On delay constrained CAC scheme and scheduling policy for CBR traffic in IEEE 802.11e wireless LANs. Wireless Communications and Mobile Computing, 10(11), 1509–1520.CrossRefGoogle Scholar
  12. 12.
    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2010). iPAS: An user perceived quality-based intelligent prioritized adaptive scheme for IPTV in wireless home networks. IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–6). Shanghai, China.Google Scholar
  13. 13.
    Rodrigues, E. B., & Cavalcanti, F. R. P. (2008). QoS-driven adaptive congestion control for voice over IP in multiservice wireless cellular networks. IEEE Communications Magazine, 46(1), 100–107.CrossRefGoogle Scholar
  14. 14.
    McGovern, P., Perry, P., Murphy, S., & Murphy, L. (2011). Endpoint-based call admission control and resource management for VoWLAN. IEEE Transactions on Mobile Computing, 10(5), 684–699.CrossRefGoogle Scholar
  15. 15.
    Lin, P., Chou, W.-I., & Lin, T. (2011). Achieving airtime fairness of delay-sensitive applications in multirate IEEE 802.11 wireless LANs. IEEE Communications Magazine, 49(9), 169–175.CrossRefGoogle Scholar
  16. 16.
    (2005). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment-quality of service enhancements. IEEE 802.11e, IEEE Standard for Information Technology.Google Scholar
  17. 17.
    Hirantha Sithira Abeysekera, B., Matsuda, T., & Takine, T. (2008). Dynamic contention window control mechanism to achieve fairness between uplink and downlink flows in IEEE 802.11 wireless LANs. IEEE Transactions on Wireless Communications, 7(9), 3517–3525.CrossRefGoogle Scholar
  18. 18.
    Kashibuchi, K., Jamalipour, A., & Kato, N. (2010). Channel occupancy time based TCP rate control for improving fairness in IEEE 802.11 DCF. IEEE Transactions on Vehicular Technology, 59(6), 2974–2985.CrossRefGoogle Scholar
  19. 19.
    Yun, S., Kim, H., Lee, H., & Kang, I. (2007). 100+ VoIP calls on 802.11b: The power of combining voice frame aggregation and uplink-downlink bandwidth control in wireless LANs. IEEE Journal on Selected Areas in Communications, 25(4), 689–698.CrossRefGoogle Scholar
  20. 20.
    Lim, W.-S., Kim, D.-W., & Suh, Y.-J. (2011). Achieving fairness between uplink and downlink flows in error-prone WLANs. IEEE Communications Letters, 15(8), 822–824.CrossRefGoogle Scholar
  21. 21.
    Chou, C. T., Shin, K. G., & Shankar, N. (2006). Contention-based airtime usage control in multirate IEEE 802.11 wireless LANs. IEEE/ACM Transactions on Networks, 14(6), 1179–1192.CrossRefGoogle Scholar
  22. 22.
    Leith, D. J., Clifford, P., Malone, D., & Ng, A. (2005). TCP fairness in 802.11e WLANs. IEEE Communications Letters, 9(11), 964–966.CrossRefGoogle Scholar
  23. 23.
    Rich, E. (1979). User modeling via stereotypes. Cognitive Science Journal, 3(4), 329–354.CrossRefGoogle Scholar
  24. 24.
    Muntean, C. H., Muntean, G. M., McManis, J., & Cristea, A. I. (2007). Quality of experience-LAOS: Create once, use many, use anywhere. International Journal of Learning Technology, 3(3), 209–229.Google Scholar
  25. 25.
    Muntean, C. H., & McManis, J. (2004). A QoS-aware adaptive web-based system. IEEE International Conference on Communications (ICC) (pp. 2204–2208). Paris, France.Google Scholar
  26. 26.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal of Selected Areas in Communications, 18(3), 535–547.CrossRefGoogle Scholar
  27. 27.
    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2012). A novel bandwidth estimation algorithm for IEEE 802.11 TCP data transmissions. IEEE wireless communications and networking conference (WCNC) workshop on wireless vehicular communications and networks (pp. 377–382). Paris, France.Google Scholar
  28. 28.
    Yuan, Z., Venkataraman, H., & Muntean, G.-M. (2012). MBE: Model-based bandwidth estimation for IEEE 802.11 data transmissions. IEEE Transactions on Vehicular Technology, 61(5), 2158–2171.CrossRefGoogle Scholar
  29. 29.
    Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (2003). RTP: A transport protocol for real-time applications. Internet Engineering Task Force, RFC3550.Google Scholar
  30. 30.
    (2009). IEEE 802.21-2008, standard for local and metropolitan area networks-part 21: Media independent handover services. IEEE Computer Society.Google Scholar
  31. 31.
    Padhye, J., Firoiu, V., Towsley, D., & Kurose, J. (2000). Modeling TCP reno performance: A simple model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2), 133–145.CrossRefGoogle Scholar
  32. 32.
    Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2004). Performance analysis of IEEE 802.11 DCF in presence of transmission errors. IEEE International Conf. Communications (ICC) (pp. 3854–3858). Paris, France.Google Scholar
  33. 33.
    (1988). Pulse code modulation (PCM) of voice frequencies. ITU-T Recommendation G.711.Google Scholar
  34. 34.
    Oouch, H., Takenaga, T., Sugawara, H., & Masugi, M. (2002). Study on appropriate voice data length of IP packets for VoIP network adjustment. In IEEE global telecommunications conference (GLOBECOM) (pp. 1618–1622). Taiwan, China.Google Scholar
  35. 35.
    Hui, J., & Devetsikiotis, M. (2008). The use of metamodeling for VoIP over WiFi capacity evaluation. IEEE Transactions on Wireless Communications, 7(1), 1–5.CrossRefGoogle Scholar
  36. 36.
    International Telecommunication Union. (1996). Coding of speech at 8 kbps using conjugate structure algebraic-codec-excited linear-prediction. ITU-T Recommendation G. 729.Google Scholar
  37. 37.
    Andersen, S., Duric, A., Astrom, H., Hagen, R., Kleijn, W., & Linden, J. (2004). Internet low bit rate codec (iLBC). Google Scholar
  38. 38.
    Muntean, C. H., & McManis, J. (2004). A QoS-aware adaptive web-based system. IEEE international conference communications (ICC) (pp. 2204–2208). Paris, France.Google Scholar
  39. 39.
    Recommendation ITU-T P.800. (1996). Methods for subjective determination of transmission quality. ITU-T, Geneva.Google Scholar
  40. 40.
    Schulzrinne, H., Casner, S., Frederick, R., & Jacobson, V. (1996). RTP: A transport protocol for real-time applications. RFC1889, http://www.ieft.org/rfc/rfc1889.txt.
  41. 41.
    Xia, Q., Jin, X., & Hamdi, M. (2008). Active queue management with dual virtual proportional integral queues for TCP uplink/downlink fairness in infrastructure WLANs. IEEE Transactions on Wireless Communications, 7(6), 2261–2271.CrossRefGoogle Scholar
  42. 42.
    Haykin, S. (2000). Communication systems. Hoboken, NJ: Wiley.Google Scholar
  43. 43.
    Comer, D. E. (2006). Internetworking with TCP/IP (5th ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
  44. 44.
    Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networks, 1(4), 397–413.CrossRefGoogle Scholar
  45. 45.
    SIPp. [Online]. Available: http://sipp.sourceforge.net.
  46. 46.
    Wireshark. [Online]. Available: http://www.wireshark.org.
  47. 47.
    (1999). IEEE 802.11b, part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: higher-speed physical layer extension in the 2.4 GHz band, supplement to IEEE 802.11 Std.Google Scholar
  48. 48.
    ITU-T Rec.G.114. (2003). One-way transmission time.Google Scholar
  49. 49.
    Jain, R., Chiu, D. M., & Hawe, W. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared systems. Digital Equipment Corporation, Technical Report, DEC-TR-301.Google Scholar
  50. 50.
    ITU-T Recommendation G.107. (1998). The E-Model, a computational model for use in transmission planning.Google Scholar
  51. 51.
    Cole, R. G., & Rosenbluth, J. H. (2001). Voice over IP performance monitoring. Computer Communication Review, 31(2), 9–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Performance Engineering Lab, School of Electronic EngineeringDublin City UniversityDublinIreland

Personalised recommendations