Wireless Networks

, Volume 19, Issue 7, pp 1595–1609 | Cite as

Urgency-based packet scheduling and routing algorithms for delay-sensitive data over MANETs

  • Wan Kim
  • Hyunchul Joo
  • Ki Jin An
  • Inkyu Lee
  • Hwangjun Song


This paper proposes urgency-based packet scheduling and routing algorithms to effectively deliver delay-sensitive data over a multi-hop mobile ad hoc networks supporting IEEE 802.11 multi-rate service. First, packet urgency, node urgency, and route urgency are defined on the basis of the end-to-end delay requirement. Based on these urgency metrics and the estimated transmission delay of each packet by Kalman filter, the proposed packet scheduling algorithm determines the transmission order and drop policy to minimize the node urgency without unnecessary packet drop, and the proposed routing algorithm establishes a route to minimize the derivative of route urgency in order to maximize the number of packets delivered within the required end-to-end delay. Finally, experimental results are presented to evaluate the performance of the proposed joint working algorithms.


Packet scheduling Routing Quality of service Delay-sensitive data transmission Mobile ad hoc network IEEE 802.11 multi-rate service 



This research is supported by the MKE (The Ministry of Knowledge Economy), Korea, under the HNRC (Home Network Research Center)—ITRC (Information Technology Research Center) support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2011-C1090-1111-0010) and World Class University program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-10100).


  1. 1.
    Lindeberg, M., Kristiansen, S., Plagemann, T., & Goebel, V. (2011). Challenges and techniques for video streaming over mobile ad hoc networks. Springer Multimedia Systems, 17(1), 51–82.CrossRefGoogle Scholar
  2. 2.
    Calafate, C. T., Malumbres, M. P., Oliver, J., Cano, J. C., & Manzoni, P. (2009). QoS support in MANETs: A modular architecture based on the IEEE 802.11e Technology. IEEE Transactions on Circuits and Systems for Video Technology, 19(5), 678–692.CrossRefGoogle Scholar
  3. 3.
    Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Computer Communication Review, 24(4), 234–244.CrossRefGoogle Scholar
  4. 4.
    Clausen, T., Jacquet, P., Laouiti, A., Minet, P., Muhlethaler, P., Qayyum, A. & Viennot, L. (2002). Optimized link state routing protocol. IETF Internet Draft, draft-ietf-manet-olsr-07.txt.Google Scholar
  5. 5.
    Chiang, C. C., Wu, H. K., Liu, W., & Gerla, M. (1997). Routing in clustered multihop mobile wireless networks with fading channel. IEEE Singapore International Conference on Networks (SICON) (pp. 197–211), Apr 1997.Google Scholar
  6. 6.
    Murthy, S., & Garcia-Luna-Aceves, J. J. (1996). An efficient routing protocol for wireless networks. ACM/Baltzer Mobile Networks and Applications, 1(2), 183–197.CrossRefGoogle Scholar
  7. 7.
    Johnson, D. B., Maltz, D. A., & Broch, J. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks in ad hoc networking (pp. 139–172). Reading: Addison-Wesley.Google Scholar
  8. 8.
    Perkins, C., Belding-Royer, E., & Das, S. (2002). Ad hoc on-demand distance vector (AODV) Routing. IETF RFC 3561, July 2002.Google Scholar
  9. 9.
    Park, V. D. & Corson, M. S. (1997) A highly adaptive distributed routing algorithm for mobile wireless networks. IEEE International Conference on Computer Communications (INFOCOM), Apr. 1997.Google Scholar
  10. 10.
    Jiang, M., Li, J., & Tay, Y. C. (1999). Cluster Based Routing Protocol (CBRP). IETF MANET Working Group, Internet-Draft.Google Scholar
  11. 11.
    Pearlman, M. R., & Hass, Z. J. (1999). Determining the optimal configuration for the zone routing protocol. IEEE Journal on Selected Areas in Communications, 17(8), 1395–1414.CrossRefGoogle Scholar
  12. 12.
    Chen, T., Walrand, J., & Messerschmitt, D. (1989). Dynamic priority protocols for packet voice. IEEE Journal on Selected Areas in Communications, 7(5), 632–643.CrossRefGoogle Scholar
  13. 13.
    Li, C., & Knightly, E. (2002). Coordinated multihop scheduling: A framework for end-to-end services. IEEE/ACM Transactions on Networking, 10(6), 776–789.CrossRefGoogle Scholar
  14. 14.
    Lim, H., Lim, C., & Hou, J. C. (2006). A coordinate-based approach for exploiting temporal-spatial diversity in wireless mesh networks. ACM International Conference on Mobile Computing and Networking (MobiCom) (pp. 14–25), Sep. 2006.Google Scholar
  15. 15.
    Iannaccone, G., Brandauer, C., Ziegler, T., Diot, C., Fdida, S., & May, M. (2001). Comparison of tail drop and active buffer management performance for bulk-data and web-like internet traffic. IEEE Symposium on Computers and Communications (ISCC) (pp. 122–129), July 2001.Google Scholar
  16. 16.
    Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transaction on Networking, 1(4), 397–413.CrossRefGoogle Scholar
  17. 17.
    Feng, W., Shin, K. G., Kandlur, D., & Saha, D. (2002). The BLUE active buffer management algorithms. IEEE/ACM Transactions on Networking, 10(4), 513–528.CrossRefGoogle Scholar
  18. 18.
    Ott, T. J., Lakshman, T. V., & Wong, L. H. (1999). SRED: Stabilized RED. IEEE International Conference on Computer Communications (INFOCOM) (pp. 1346–1355), Mar. 1999.Google Scholar
  19. 19.
    Aweya, J., Ouellette, M., Montuno, D. Y., & Chapman, A. (2001). A control theoretic approach to active buffer management. Computer Networks, 36, 203–235.CrossRefGoogle Scholar
  20. 20.
    Elbatt, T. & Ephremides, A. (2002). Joint scheduling and power control for wireless ad-hoc networks. IEEE International Conference on Computer Communications (INFOCOM) (pp. 976–984).Google Scholar
  21. 21.
    Chen, L., & Heinzelman, W. (2005). QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 23(3), 561–572.CrossRefGoogle Scholar
  22. 22.
    Liang, B., & Dong, M. (2007). Packet prioritization in multi-hop latency aware scheduling for delay constrained communication. IEEE Journal on Selected Areas in Communications, 25(4), 819–830.CrossRefGoogle Scholar
  23. 23.
    Wu, H., Wang, X., Liu, Y., Zhang, Q., & Zhang, Z. (2005). SoftMAC: Layer 2.5 MAC for VoIP support in multi-hop wireless networks. IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), Sep. 2005.Google Scholar
  24. 24.
    Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive mac protocol for multi-hop wireless networks. ACM International Conference on Mobile Computing and Networking (MobiCom), July 2001.Google Scholar
  25. 25.
    Sadeghi, B., Kanodia, V., Sabharwal, A., & Knightly, E. (2002). OAR: An opportunistic auto-rate media access protocol for ad hoc networks. ACM International Conference on Mobile Computing and Networking (MobiCom), Sep. 2002.Google Scholar
  26. 26.
    Ji, Z., Yang, Y., Zhou, J., Takai, M., & Bagrodia, R. (2004). Exploiting medium access diversity in rate adaptive wireless LANs. ACM International Conference on Mobile Computing and Networking (MobiCom) (pp. 345–359), Sep. 2004.Google Scholar
  27. 27.
    Seok, Y., Park, J., & Choi, Y. (2003). Multi-rate aware routing protocol for mobile ad hoc networks. In IEEE Vehicular Technology Conference (pp. 1749–1752). Spring 2003.Google Scholar
  28. 28.
    Fan, Z. (2004). High throughput reactive routing in multi-rate ad hoc networks. Electronics Letters, 40(25), 1591–1592.CrossRefGoogle Scholar
  29. 29.
    Ryu, S., Ryu, B., Seo, H., & Shin, M. (2005). Urgency and efficiency based packet scheduling algorithm for OFDMA wireless system. IEEE International Conference on Communications (ICC) (pp. 2779–2785), May 2005.Google Scholar
  30. 30.
    Huang, L. & Lai, T. H. (2002). On the scalability of IEEE 802.11 ad hoc networks. ACM International Symposium on Mobile Ad Hoc Networking & Computing, Lausanne, Switzerland (pp. 173–182). June 2002.Google Scholar
  31. 31.
    Lai, T. H. & Zhou, D. (2003). Efficient and scalable IEEE 802.11 ad-hoc-mode timing synchronization function. International Conference on Advanced Information Networking and Applications (pp. 318–323), Mar. 2003.Google Scholar
  32. 32.
    Sheu, J. P., Chao, C. M., Hu, W. K., & Sun, C. W. (2007). A clock synchronization algorithm for multihop wireless ad hoc. Wireless Personal Communications, 43(2), 185–200.CrossRefGoogle Scholar
  33. 33.
    Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. International Conference on Mobile Computing and Networking (pp. 236–251), Aug. 2001.Google Scholar
  34. 34.
    Bianchi, G. & Tinnirello, I. (2003). Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. Annual Joint Conference of the IEEE Computer and Communications (pp. 844–852), Apr. 2003.Google Scholar
  35. 35.
    Ekelin, S., Nilsson, M., Hartikainen, E., Johnsson, A., Mangs, J. E., Melander, B., & Bjorkman, M. (2006). Realtime measurement of end-to-end available bandwidth using Kalman filtering. IEEE/IFIP Network Operations and Management Symposium (NOMS) (pp. 73–84), Apr. 2006.Google Scholar
  36. 36.
    Carvalho, M. M., Garcia-Luna-Aceves, J. J. (2003). Delay analysis IEEE 802.11 in single-hop networks. IEEE International Conference on Network Protocols, Atlanta, GA, USA, Nov. 2003.Google Scholar
  37. 37.
    NS-2 [Online]. Available: http://www.isi.edu/nsnam/ns/index.html/.
  38. 38.
    IEEE 802.11b (1999). Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: Higher Speed Physical Layer Extension in the 2.4 GHz Band.Google Scholar
  39. 39.
    Joint Video Team (JVT) reference software, version 15.1. [Online]. Available: http://iphome.hhi.de/suehring/tml/.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Wan Kim
    • 1
  • Hyunchul Joo
    • 2
  • Ki Jin An
    • 3
  • Inkyu Lee
    • 4
  • Hwangjun Song
    • 1
  1. 1.POSTECHPohangRepublic of Korea
  2. 2.Samsung Electronics CorporationSuwonRepublic of Korea
  3. 3.Korea Institute of Science and TechnologySeoulRepublic of Korea
  4. 4.Korea UniversitySeoulRepublic of Korea

Personalised recommendations