Skip to main content
Log in

Cost analysis and minimization of movement-based location management schemes in wireless communication networks: a renewal process approach

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The paper makes new contributions to cost analysis and minimization of movement-based location management schemes in wireless communication networks. The main contributions of the paper are three-fold. First, we consider two different call handling models, that is, the call plus location update (CPLU) model and the call without location update (CWLU) model. We point out that all existing analysis of location update cost of a movement-based location management scheme (MBLMS) do not accurately capture the essence of the two models. Second, we analyze the exact location update cost of an MBLMS under both CPLU and CWLU models using a renewal process approach which has rarely been used before. We find that the location update cost of an MBLMS under the CWLU model is much easier to analyze than that of an MBLMS under the CPLU model. Furthermore, an MBLMS operated under the CWLU model has lower location update cost than an MBLMS operated under the CPLU model. Third, we are able to derive a closed form solution to the movement threshold that minimizes the total cost of location management in an MBLMS for the CPLU model when the inter-call time has an arbitrary distribution and the cell residence time has an Erlang distribution, and for the CWLU model when both inter-call time and cell residence time have arbitrary distributions. Such closed form solutions have not been available in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. http://en.wikipedia.org/wiki/Renewal_theory.

  2. Abutaleb, A., & Li, V. O. K. (1997). Paging strategy optimization in personal communication systems. Wireless Networks, 3(3), 195–204.

    Article  Google Scholar 

  3. Abutaleb, A., & Li, V. O. K. (1997). Location update optimization in personal communication systems. Wireless Networks, 3(3), 205–216.

    Article  Google Scholar 

  4. Akyildiz, I. F., & Ho, J. S. M. (1995). Dynamic mobile user location update for wireless PCS networks. Wireless Networks, 1, 187–196.

    Article  Google Scholar 

  5. Akyildiz, I. F., Ho, J. S. M., & Lin, Y.-B. (1996). Movement-based location update and selective paging for PCS networks. IEEE/ACM Transactions on Networking, 4, 629–638.

    Article  Google Scholar 

  6. Akyildiz, I. F., McNair, J., Ho, J. S. M., Uzunalioğlu, H., & Wang, W. (1999). Mobility management in next-generation wireless systems. Proceedings of the IEEE, 87(8), 1347–1384.

    Article  Google Scholar 

  7. Akyildiz, I. F., & Wang, W. (2002). A dynamic location management scheme for next-generation multitier PCS systems. IEEE Transactions on Wireless Communications, 1(1), 178–189

    Article  Google Scholar 

  8. Alba, E., García-Nieto, J., Taheri, J., & Zomaya, A. (2008). New research in nature inspired algorithms for mobility management in GSM networks. Lecture Notes in Computer Science, 4974, 1–10.

    Article  Google Scholar 

  9. Bar-Noy, A., Feng, Y., & Golin, M. J. (2007). Paging mobile users efficiently and optimally. Proceedings of the 26th IEEE International Conference on Computer Communications, pp. 1910–1918.

  10. Bar-Noy, A., Kessler, I., & Sidi, M. (1995). Mobile users: To update or not update?. Wireless Networks, 1, 175–185

    Article  Google Scholar 

  11. Baumann, F. V., & Niemegeers, I. G. (1994). An evaluation of location management procedures. Proceedings of IEEE International Conference on Universal Personal Communications, pp. 359–364.

  12. Brown, T. X., & Mohan, S. (1997). Mobility management for personal communications systems. IEEE Transactions on Vehicular Technology, 46(2), 269–278.

    Article  Google Scholar 

  13. Casares-Giner, V., & Mataix-Oltra, J. (2002). Global versus distance-based local mobility tracking strategies: a unified approach. IEEE Transactions on Vehicular Technology, 51(3), 472–485.

    Article  Google Scholar 

  14. Cayirci, E., & Akyildiz, I. F. (2002). User mobility pattern scheme for location update and paging in wireless systems. IEEE Transactions on Mobile Computing, 1(3), 236–247.

    Article  Google Scholar 

  15. Cox, D. R. (1962). Renewal theory. London: Methuen & Co. Ltd.

    MATH  Google Scholar 

  16. Escalle, P. G., Giner, V. C., & Oltra, J. M. (2002). Reducing location update and paging costs in a PCS network. IEEE Transactions on Wireless Communications, 1(1), 200–209.

    Article  Google Scholar 

  17. Fang, Y. (2002). General modeling and performance analysis for location management in wireless mobile networks. IEEE Transactions on Computers, 51(10), 1169–1181.

    Article  Google Scholar 

  18. Fang, Y. (2003). Movement-based mobility management and trade off analysis for wireless mobile networks. IEEE Transactions on Computers, 52(6), 791–803.

    Article  Google Scholar 

  19. Fang, Y. (2005). Modeling and performance analysis for wireless mobile networks: A new analytical approach. IEEE/ACM Transactions on Networking, 13(5), 989–1002.

    Article  Google Scholar 

  20. Fang, Y., Chlamtac, I., & Lin, Y.-B. (2000). Potable movement modeling for PCS networks. IEEE Transactions on Vehicular Technology, 49(4), 13560–1363

    Google Scholar 

  21. Furht, B., & Ilyas, M. (eds) (2003). Wireless internet handbook—technologies, standards, and applications. Boca Raton, FL: CRC Press.

    Google Scholar 

  22. Glisic, S. G. (2006). Advanced wireless networks—4G technologies. Chichester, England: Wiley.

    Book  Google Scholar 

  23. Ho, J. S. M., & Akyildiz, I. F. (1995). Mobile user location update and paging under delay constraints. Wireless Networks, 1, 413–425.

    Article  Google Scholar 

  24. Kleinrock, L. (1975). Queueing systems, Vol. 1: Theory. Wiley: New York.

    Google Scholar 

  25. Kruijt, N. E., Sparreboom, D., Schoute, F. C., & Prasad, R. (1998). Location management strategies for cellular mobile networks. IEE Electronics Communication Engineering Journal, 10(2), 64–72.

    Article  Google Scholar 

  26. Kyamakya, K., & Jobmann, K. (2005). Location management in cellular networks: classification of the most important paradigms, realistic simulation framework, and relative performance analysis. IEEE Transactions on Vehicular Technology, 54(2), 687–708.

    Article  Google Scholar 

  27. Li, J., Kameda, H., & Li, K. (2000). Optimal dynamic mobility management for PCS networks. IEEE/ACM Transactions on Networking, 8(3), 319–327.

    Article  Google Scholar 

  28. Li, J., Pan, Y., & Jia, X. (2002). Analysis of dynamic location management for PCS networks. IEEE Transactions on Vehicular Technology, 51(5), 1109–1119.

    Article  Google Scholar 

  29. Lin, Y.-B. (1997). Reducing location update cost in a PCS network. IEEE/ACM Transactions on Networking, 5(1), 25–33.

    Article  Google Scholar 

  30. Madhow, U., Honig, M. L., & Steiglitz, K. (1995). Optimization of wireless resources for personal communications mobility tracking. IEEE/ACM Transactions on Networking, 3(12), 698–707.

    Article  Google Scholar 

  31. Ng, C. K., & Chan, H. W. (2005). Enhanced distance-based location management of mobile communication systems using a cell coordinates approach. IEEE Transactions on Mobile Computing, 4(1), 41–55.

    Article  MathSciNet  Google Scholar 

  32. Rodríguez-Dagnino, R. M., & Takagi, H. (2003). Counting handovers in a cellular mobile communication network: Equilibrium renewal process approach. Performance Evaluation, 52, 153–174.

    Article  Google Scholar 

  33. Rodríguez-Dagnino, R. M., & Takagi, H. (2007). Movement-based location management for general cell residence times in wireless networks. IEEE Transactions on Vehicular Technology, 56(5), 2713–2722.

    Article  Google Scholar 

  34. Rose, C. (1996). Minimizing the average cost of paging and registration: A timer-based method. Wireless Networks, 2(2), 109–116.

    Article  Google Scholar 

  35. Rose, C. (1999). State-based paging/registration: A greedy technique. IEEE Transactions on Vehicular Technology, 48(1), 166–173.

    Article  Google Scholar 

  36. Rose, C., & Yates, R. (1995). Minimizing the average cost of paging under delay constraints. Wireless Networks, 1, 11–219.

    Article  Google Scholar 

  37. Saraydar, C. U., Kelly, O. E., & Rose, C. (2000). One-dimensional location area design. IEEE Transactions on Vehicular Technology, 49(5), 1626–1632.

    Article  Google Scholar 

  38. Subrata1, R., & Zomaya, A. Y. (2003). Dynamic location management for mobile computing. Telecommunication Systems, 22(1–4), 169–187.

    Article  Google Scholar 

  39. Tabbane, S. (1997). Location management methods for third-generation mobile systems. IEEE Communications Magazine, 35, 72–84.

    Article  Google Scholar 

  40. Taheri, J., & Zomaya, A. Y. (2007). A simulated annealing approach for mobile location management. Computer Communications, 30(4), 714–730

    Article  Google Scholar 

  41. Taheri, J., & Zomaya, A. Y. (2007). A combined genetic-neural algorithm for mobility management. Journal of Mathematical Modelling and Algorithms, 6(3), 481–507

    Article  MATH  MathSciNet  Google Scholar 

  42. Taheri, J., & Zomaya, A. Y. (2007). Clustering techniques for dynamic location management in mobile computing. Journal of Parallel and Distributed Computing, 67(4), 430–447

    Article  MATH  Google Scholar 

  43. Taheri, J., & Zomaya, A. Y. (2008). Bio-inspired algorithms for mobility management. Proceedings of the International Symposium on Parallel Architectures, Algorithms, and Networks, pp. 216–223

  44. Taheri, J., & Zomaya, A. Y. (2009). A simulation tool for mobility management experiments. International Journal of Pervasive Computing and Communications, 5(3), 360–379.

    Article  Google Scholar 

  45. Verkama, M. (1996). Optimal paging—A search theory approach. Proceedings of IEEE International Conference on Universal Personal Communications, pp. 956–960.

  46. Wan, G., & Lin, E. (1999). Cost reduction in location management using semi-realtime movement information. Wireless Networks, 5, 245–256

    Article  Google Scholar 

  47. Wang, W., Akyildiz, I. F., Stüber, G. L., & Chung, B.-Y. (2001). Effective paging schemes with delay bounds as QoS constraints in wireless systems. Wireless Networks, 7, 455–466.

    Article  MATH  Google Scholar 

  48. Yener, A., & Rose, C. (1998). Highly mobile users and paging: optimal polling strategies. IEEE Transactions on Vehicular Technology, 47(4), 1251–1257.

    Article  Google Scholar 

  49. Zhang, Y., Zheng, J., Zhang, L., Chen, Y.,& Ma, M. (2006). Modeling location management in wireless networks with generally distributed parameters. Computer Communications, 29(12), 2386–2395.

    Article  Google Scholar 

  50. Zwillinger, D. (ed) (1996). Standard mathematical tables and formulae (30th ed.). Boca Raton, FL: CRC Press.

    MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to two anonymous reviewers and the editor for their suggestions to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K. Cost analysis and minimization of movement-based location management schemes in wireless communication networks: a renewal process approach. Wireless Netw 17, 1031–1053 (2011). https://doi.org/10.1007/s11276-011-0332-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-011-0332-0

Keywords

Navigation