Skip to main content
Log in

Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The protective role of superoxide dismutase (Sod) against oxidative stress, resulting from the common antibiotic pathway of action, has been studied in the wild type and mutant strains of swarmer Pseudomonas aeruginosa, lacking Cytosolic Mn-Sod (sodM), Fe-Sod (sodB) or both Sods (sodMB).

Our results showed that inactivation of sodB genes leads to significant motility defects and tolerance to meropenem. This resistance is correlated with a greater membrane unsaturation as well as an effective intervention of Mn-Sod isoform, in antibiotic tolerance.

Moreover, loss of Mn-Sod in sodM mutant, leads to polymixin intolerance and is correlated with membrane unsaturation. Effectivelty, sodM mutant showed an enhanced swarming motility and a conserved rhamnolipid production. Whereas, in the double mutant sodMB, ciprofloxacin tolerance would be linked to an increase in the percentage of saturated fatty acids in the membrane, even in the absence of superoxide dismutase activity.

The overall results showed that Mn-Sod has a protective role in the tolerance to antibiotics, in swarmer P.aeruginosa strain. It has been further shown that Sod intervention in antibiotic tolerance is through change in membrane fatty acid composition.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aloui A, Mihoub M, Sethom MM, Chatti A, Feki M, Kaabachi N, Landoulsi A (2010) Effects of dam and/or seqA mutations on the fatty acid and phospholipid membrane composition of Salmonella enterica serovar Typhimurium. Foodborne Pathog Dis 7(5):573–583

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917.

  • Chen H et al (2020) In vitro and in vivo effects of the polymyxin-vorinostat combination therapy against multidrug-resistant Gram-negative pathogens. Microb Drug Resist 269:1108–1119. https://doi.org/10.1089/mdr.2019.0309

    Article  CAS  Google Scholar 

  • Da Cruz N, Waleska S et al (2021) Oxidative stress response in Pseudomonas aeruginosa. Pathogens 10:9: 1187. https://doi.org/10.3390/pathogens10091187

    Article  CAS  Google Scholar 

  • Davenport PW, Griffin JL, Welch M (2015) Quorum sensing is accompanied by global metabolic changes in the opportunistic human pathogen Pseudomonas aeruginosa. J Bacteriol 197:2072–2082. https://doi.org/10.1128/JB.02557-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer Daniel J, Michael A, Kohanski, Collins JJ (2009) Role of reactive oxygen species in antibiotic action and resistance. Current opinion in microbiology.12.5. 482–489. https://doi.org/10.1016/j.mib.2009.06.018

  • Fee JA (1991) Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol Microbiol 5(11):2599–2610

    Article  CAS  PubMed  Google Scholar 

  • Gales AC, Jones RN, Gordon KA, Sader HS, Wilke WW, Beach ML, Pfaller MA, Doern GV, SENTRY Study Group Latin America T (2000) Activity and spectrum of 22 antimicrobial agents tested against urinary tract infection pathogens in hospitalized patients in Latin America: report from the second year of the SENTRY antimicrobial surveillance program (1998). J Antimicrob Chemother 45(3):295–303

  • García-Contreras R et al (2020) Rhamnolipids stabilize quorum sensing mediated cooperation in Pseudomonas aeruginosa. FEMS Microbiol Lett 367:10: fnaa080. https://doi.org/10.1093/femsle/fnaa080

    Article  CAS  PubMed  Google Scholar 

  • Ghorbal SK, Chatti A, Sethom MM, Maalej L, Mihoub M, Kefacha S, Feki M, Landoulsi A, Hassen A (2013) Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations. Curr Microbiol 67:112–117

  • Grant SS, Kaufmann BB, Chand NS, Haseley N, Hung DT (2012) Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proceedings of the National Academy of Sciences. 109(30): 12147–12152

  • Hanini R et al (2017) Role of sod gene in response to static magnetic fields in Pseudomonas aeruginosa. Curr Microbiol 4:8: 930–937. https://doi.org/10.1007/s00284-017-1264-4

    Article  CAS  Google Scholar 

  • Hassett DJ et al (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 345:1082–1093. https://doi.org/10.1046/j.1365-2958.1999.01672.x

    Article  Google Scholar 

  • Heindorf M et al (2014) Impact of Acinetobacter baumannii superoxide dismutase on motility, virulence, oxidative stress resistance and susceptibility to antibiotics. PLoS ONE. https://doi.org/10.1371/journal.pone.0101033. .9.7: e101033

    Article  PubMed  PubMed Central  Google Scholar 

  • Igbinosa IH, Etinosa OI (2015) The Pseudomonads as a versatile opportunistic pathogen in the environment. The Battle against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs. Formatex Research Center Badajoz, Spain. 822–831

  • Imlay JA (2013) The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11(7):443–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiratisin P, Tucker KD, Passador L (2002) LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 184(17):4912–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latif IA (2018) Swarming motility patterns of Pseudomonas aeruginosa isolated from Otitis media. Tikrit J Pure Sci 20(4):26–29

    Article  Google Scholar 

  • Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol 175(11):7512–7518

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Nilsson M, Kragh KN, Hedal I, Alcàcer-Almansa J, Kiilerich RO, …, Tolker-Nielsen T (2023) The role of individual exopolysaccharides in antibiotic tolerance of Pseudomonas aeruginosa aggregates. Front Microbiol 14:1187708

    Article  PubMed  PubMed Central  Google Scholar 

  • Liaw SJ, Lai HC, Wang WB (2004) Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infect Immun 72(12):6836–6845

  • Lima OC, Larcher G, Vandeputte P, Lebouil A, Chabasse D, Simoneau P, Bouchara JP (2007) Molecular cloning and biochemical characterization of a Cu, Zn-superoxide dismutase from Scedosporium Apiospermum. Microbes Infect 9(5):558–565

    Article  CAS  PubMed  Google Scholar 

  • Martins D et al (2018) Superoxide dismutase activity confers (p) ppgpp-mediated antibiotic tolerance to stationary-phase Pseudomonas aeruginosa. Proc Natl Acad Sci 115(39):9797–9802. https://doi.org/10.1073/pnas.1804525115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins D, McKay GA, English AM, Nguyen D (2020) Sublethal paraquat confers multidrug tolerance in Pseudomonas aeruginosa by inducing superoxide dismutase activity and lowering envelope permeability. Front Microbiol 11:576708

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurya R, Namdeo M (2021) Superoxide dismutase: a key enzyme for the survival of intracellular pathogens in host. Reactive Oxygen Species

  • Meliani A, Bensoltane A (2018) Chemotaxis Behavior of Pseudomonas species and Biodegradation of pollutants. Sustainable Agric Reviews 31:483–507. https://doi.org/10.1007/978-3-319-94232-2_10

    Article  Google Scholar 

  • Miao L, Clair DKS (2009) Regulation of superoxide dismutase genes: implications in Disease. Free Radic Biol Med 47(4):344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon YJ, Kim SI, Chung YH (2012) Sensing and responding to UV-A in cyanobacteria. Int J Mol Sci 13(12):16303–16332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar O, Desouky SE, El-Sherbiny GM, Abu-Elghait M (2022) Correlation between phenotypic virulence traits and antibiotic resistance in Pseudomonas aeruginosa clinical isolates. Microb Pathog 162:105339

    Article  CAS  PubMed  Google Scholar 

  • Overhage J et al (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. 2671–2679. https://doi.org/10.1128/JB.01659-07

  • Pinzon NM, Lu-Kwang JU (2009) Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide. Biotechnol Lett 3110:1583–1588. https://doi.org/10.1007/s10529-009-0049-7

    Article  CAS  Google Scholar 

  • Rada Balázs (2017) Interactions between neutrophils and Pseudomonas aeruginosa in cystic fibrosis. Pathogens. https://doi.org/10.3390/pathogens6010010. 6.1: 10

    Article  PubMed  PubMed Central  Google Scholar 

  • Salma KB, Lobna M, Sana K, Kalthoum C, Imene O, Abdelwaheb C (2016) Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation. J Basic Microbiol 56(7):736–740.

  • Sampson TR, Liu X, Schroeder MR, Kraft CS, Burd EM, Weiss DS (2012) Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 56(11):5642–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkema JAN, Jan A, de Bont, Bert Poolman (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Reviews 59 2201–222. https://doi.org/10.1128/mr.59.2.201-222.1995

  • Tremblay J, Déziel E (2010) Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics 11(1):1–15

    Article  Google Scholar 

  • Valentin JD, Straub H, Pietsch F, Lemare M, Ahrens CH, Schreiber F, …, Ren Q (2022) Role of the flagellar hook in the structural development and antibiotic tolerance of Pseudomonas aeruginosa biofilms. ISME J 16(4):1176–1186

    Article  CAS  PubMed  Google Scholar 

  • Van Acker H, Gielis J, Acke M, Cools F, Cos P, Coenye T (2016) The role of reactive oxygen species in antibiotic-induced cell death in Burkholderia cepacia complex bacteria. PLoS ONE 11(7):e0159837

    Article  PubMed  Google Scholar 

  • Wayne P (2014) CLSI performance standard of antimicrobial susceptibility testing: twenty-fourth international supplement. CLSI Document M100-S24, Clinical and Laboratory Standard Institute. 34(1):50–106

  • Xavier JB, Kim W, Foster KR (2011) A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa Xavier – 2010 - Molecular Microbiology - Wiley Online Library. Mol Microbiol 79:166–179. https://doi.org/10.1111/j.1365-2958.2010.07436.x

    Article  CAS  PubMed  Google Scholar 

  • Yeung AT, Parayno A, Hancock RE (2012) Mucin promotes rapid surface motility in Pseudomonas aeruginosa. MBio 3(3):e00073–e00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, …, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. 69(5):2831–2841Applied and environmental microbiology

Download references

Acknowledgements

The authors are grateful to Professor Moncef Feki of la Rabta-hospital biochemistry department in Tunisia for ensuring the Gaz chromatography analysis.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salma Kloula Ben Ghorbal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Ghorbal, S.K., Maalej, L., Ouzari, IH. et al. Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics. World J Microbiol Biotechnol 39, 347 (2023). https://doi.org/10.1007/s11274-023-03801-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03801-2

Keywords

Navigation