Skip to main content
Log in

Bacterial cell permeability study by metal oxide and mixed metal oxide nanoparticles: analysis of the factors contributing to the antibacterial activity of nanoparticles

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, we investigate the nanoparticle-cell wall interaction by NiO and mixed metal oxide CuO–NiO nanoparticles. We have synthesized and characterized the nanoparticles using XRD, FESEM, EDS, UV vis. spectroscopy, FTIR, Zeta, and TEM analysis in our previous work. Furthermore, a preliminary antibacterial study showed that both the nanoparticles performed very well as antibacterial agents. In this extended work, we investigate the mechanism of interaction of NiO and CuO–NiO nanoparticles with S. aureus and E. coli cells as there are number of studies for antibacterial mechanism of CuO nanoparticles. The uptake of crystal violet dye in the outer bacterial membrane, the release of ß-galactosidase enzyme, and relative electric conductivity assay were used to investigate changes in the permeability and integrity of the cell membrane. Superoxide ions, which are produced intracellularly as ROS by nanoparticles, severely damage bacterial membranes. Zeta potential measurement, which resulted in surface charge neutralization, proved membrane instability. FTIR analysis was used to identify changes in the proteins, carbohydrates, and fatty acids that make up the chemical composition of cell surfaces. AFM imaging demonstrated extensive alteration of the nanomechanical and surface characteristics. Confocal microscopy examination supported the DNA fragmentation and nanoparticle-cell adhesion. Due to their enhanced antibacterial activity when compared to monometallic oxide nanoparticles, this study demonstrated that mixed metal oxides can be employed in the health and biomedical sectors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

AFM:

Atomic Force Microscopy

BET:

Brunauer–Emmett–Teller

BJH:

Barrett, Joyner, and Halenda

CFU:

Colony Forming Unit

DAPI:

6-Diamidino-2-phenylindole

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediaminetetraacetic acid

FTIR:

Fourier Transform Infra-Red

FESEM:

Field Emission Scan Electron Microscopy

LB:

Luria Bertani

LPS:

Lipopolysaccharide

MBC:

Minimum Bactericidal Concentration

MIC:

Minimum Inhibitory Concentration

MMO:

Mixed Metal Oxide

NBT:

Nitroblue tetrazolium

ONP:

O-nitrophenol

ONPG:

Ortho-nitrophenyl-β-galactoside

PBS:

Phosphate buffered saline

ROS:

Reactive Oxygen sSpecies

UV–Vis:

Ultraviolet–visible

XRD:

X-Ray Diffraction

References

  • Abbasi BA, Iqbal J, Mahmood T, Ahmad R, Kanwal S, Afridi S (2019) Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Mater Res Express 6:0850a7

    Article  CAS  Google Scholar 

  • Ahmed B, Solanki B, Zaidi A, Khan MS, Musarrat J (2019) Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid-bacteria interface. Toxicol Res (camb) 8:246–261

    Article  CAS  PubMed  Google Scholar 

  • Amna T, Hassan MS, Yousef A, Mishra A, Barakat NAM, Khil MS, Kim HY (2013) Inactivation of foodborne pathogens by NiO/TiO2 Composite nanofibers: a novel biomaterial system. Food Bioprocess Technol 6:988–96

    Article  CAS  Google Scholar 

  • Angel Ezhilarasi A, Judith Vijaya J, Kaviyarasu K, John Kennedy L, Ramalingam RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol B Biol 180:39–50

    Article  CAS  Google Scholar 

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8:3326–3337

    Article  CAS  PubMed  Google Scholar 

  • Arakha M, Saleem M, Mallick BC, Jha S (2015) The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci Rep 5:1–10

    Article  Google Scholar 

  • Atri A, Echabaane M, Bouzidi A, Harabi I, Soucase BM, Ben Chaâbane R (2023) Green synthesis of copper oxide nanoparticles using Ephedra Alata plant extract and a study of their antifungal, antibacterial activity and photocatalytic performance under sunlight. Heliyon 9:1–16

    Article  Google Scholar 

  • Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M (2019) Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep 9:1–10

    Article  Google Scholar 

  • Behera N, Arakha M, Priyadarshinee M, Pattanayak BS, Soren S, Jha S, Mallick BC (2019) Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv 9:24888–24894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bepari S, Stevens-boyd R, Mohammad N, Li X, Abrokwah R, Kuila D (2020) Composite mesoporous SiO 2 -Al 2 O 3 supported Fe, FeCo and FeRu catalysts for Fischer-Tropsch studies in a 3-D printed stainless-steel microreactor materials today : proceedings composite mesoporous SiO 2 -Al 2 O 3 supported Fe, FeCo and FeRu catalysts. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.04.582

    Article  Google Scholar 

  • Davis R, Mauer L (2010) Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol A Méndez-Vilas 2:1582–94

    Google Scholar 

  • Deng S, Zeng Z (2018) In vitro antibacterial activity and mechanism of monocaprylin against Escherichia coli and Staphylococcus aureus. J Food Prot 81:1988–1996

    Article  PubMed  Google Scholar 

  • Devi KP, Nisha SA, Sakthivel R, Pandian SK (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130:107–115

    Article  CAS  PubMed  Google Scholar 

  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ (2016) Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B Biol 164:352–360

    Article  CAS  Google Scholar 

  • Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V (2016) Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng 1:1–16

    Article  Google Scholar 

  • Giannousi K, Lafazanis K, Arvanitidis J, Pantazaki A, Dendrinou-samara C (2014) Hydrothermal synthesis of copper based nanoparticles : antimicrobial screening and interaction with DNA. J Inorg Biochem 133:24–32

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Gai Q-Y, Jiao J, Wang W, Zu Y-G, Fu Y-J (2016) Antibacterial activity of fructus forsythia Essential Oil and the application of EO-loaded nanoparticles to food-borne pathogens. Foods 5:73

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder S, Yadav KK, Sarkar R, Mukherjee S, Saha P, Haldar S, Karmakar S, Sen T (2015) Alteration of zeta potential and membrane permeability in bacteria: a study with cationic agents. Springerplus 4:1–14

    Article  CAS  Google Scholar 

  • Widiarti N, Sae JK, Wahyuni S (2017) Synthesis CuO-ZnO nanocomposite and its application as an antibacterial agent. IOP conference series: materials science and engineering, Vol 172, No. 1. IOP Publishing

  • Horie M, Nishio K, Fujita K, Kato H, Nakamura A, Kinugasa S, Endoh S, Miyauchi A, Yamamoto K, Murayama H, Niki E, Iwahashi H, Yoshida Y, Nakanishi J (2009) Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem Res Toxicol 22:1415–1426

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Wang X, Hayat T, Wang X (2017) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209–217

    Article  CAS  PubMed  Google Scholar 

  • Ismail NA, Shameli K, Wong MMT, Teow SY, Chew J, Sukri SNAM (2019) Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance. Mater Sci Eng C 104:109899

    Article  CAS  Google Scholar 

  • Jiang W, Saxena A, Song B, Ward BB, Beveridge TJ, Myneni SCB (2004) Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Huang X, Chen Y, Zhao H, Ye H, Huang F, Xing X, Cai J (2010) Photoinactivation effects of hematoporphyrin monomethyl ether on Gram-positive and-negative bacteria detected by atomic force microscopy. Appl Microbiol Biotechnol 88:761–770

    Article  CAS  PubMed  Google Scholar 

  • John Owonubi S, Malima NM, Revaprasadu N (2020) Metal Oxide-Based Nanocomposites as Antimicrobial and Biomedical Agents. Elsevier Inc, The Netherlands

    Book  Google Scholar 

  • Jomova K, Baros S, Valko M (2012) Redox active metal-induced oxidative stress in biological systems. Transit Met Chem 37:127–134

    Article  CAS  Google Scholar 

  • Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2018) Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities. J Mater Sci Mater Electron 29:5459–5471

    Article  CAS  Google Scholar 

  • Khan I, Bahuguna A, Kumar P, Bajpai VK (2017) Antimicrobial potential of carvacrol against uropathogenic Escherichia coli via membrane disruption depolarization, and reactive oxygen species generation. Front Microbiol 8:1–9

    Article  Google Scholar 

  • Kiwi J, Nadtochenko V (2005) Evidence for the Mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO 2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir 21:4631–41

    Article  CAS  PubMed  Google Scholar 

  • Ko JW, Kim SW, Hong J, Ryu J, Kang K, Park CB (2012) Synthesis of graphene-wrapped CuO hybrid materials by CO2 mineralization. Green Chem 14:2391–4

    Article  CAS  Google Scholar 

  • Kumar MP, Murugadoss G, Kumar MR (2020) Synthesis and characterization of CuO–NiO nanocomposite: highly active electrocatalyst for oxygen evolution reaction application. J Mater Sci Mater Electron 31:11286–11294

    Article  CAS  Google Scholar 

  • Kung ML, Tai MH, Lin PY, Wu DC, Wu WJ, Yeh BW, Hung HS, Kuo CH, Chen YW, Hsieh SL, Hsieh S (2017) Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Colloids Surf B Biointerfaces 155:399–407

    Article  CAS  PubMed  Google Scholar 

  • Lalithambika KC, Thayumanavan A, Ravichandran K, Sriram S (2017) Photocatalytic and antibacterial activities of eco-friendly green synthesized ZnO and NiO nanoparticles. J Mater Sci Mater Electron 28:2062–2068

    Article  CAS  Google Scholar 

  • Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles Sci. Rep 5:1–13

    Google Scholar 

  • Mathelié-Guinlet M, Grauby-Heywang C, Martin A, Février H, Moroté F, Vilquin A, Béven L, Delville MH, Cohen-Bouhacina T (2018) Detrimental impact of silica nanoparticles on the nanomechanical properties of Escherichia coli, studied by AFM. J Colloid Interface Sci 529:53–64

    Article  PubMed  Google Scholar 

  • Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299

    Article  CAS  Google Scholar 

  • Mei L, Lu Z, Zhang W, Wu Z, Zhang X, Wang Y, Luo Y, Li C, Jia Y (2013) Bioconjugated nanoparticles for attachment and penetration into pathogenic bacteria. Biomaterials 34:10328–10337

    Article  CAS  PubMed  Google Scholar 

  • Monga D, Basu S (2019) Enhanced photocatalytic degradation of industrial dye by g-C 3 N 4 /TiO 2 nanocomposite: role of shape of TiO 2 Adv. Powder Technol 30:1089–1098

    Article  CAS  Google Scholar 

  • Moniri Javadhesari S, Alipour S, Mohammadnejad S, Akbarpour MR (2019) Antibacterial activity of ultra-small copper oxide (II) nanoparticles synthesized by mechanochemical processing against S. aureus and E. coli. Mater Sci Eng C 105:110011

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Naumann D (1984) Some ultrastructural information on intact, living bacterial cells and related cell-wall fragments as given by FTIR. Infrared Phys 24:233–8

    Article  CAS  Google Scholar 

  • Noman E, Al-Gheethi A, Talip BA, Mohamed R, Kassim AH (2019) Inactivating pathogenic bacteria in greywater by biosynthesized Cu/Zn nanoparticles from secondary metabolite of Aspergillus iizukae optimization, mechanism and techno economic analysis. PloS one 14:1–21

    Article  Google Scholar 

  • Patra JK, Das G, Baek K (2015) Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella typhimurium. Bot Stud. https://doi.org/10.1186/s40529-015-0093-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul D, Neogi S (2019) Synthesis, characterization and a comparative antibacterial study of CuO, NiO and CuO–NiO mixed metal oxide. Mater Res Express 6:055004. https://doi.org/10.1088/2053-1591/ab003c

    Article  CAS  Google Scholar 

  • Paul D, Maiti S, Sethi DP, Neogi S (2020a) Bi-functional NiO-ZnO nanocomposite: synthesis, characterization, antibacterial and photo assisted degradation study. Adv Powder Technol. https://doi.org/10.1016/j.apt.2020.11.022

    Article  Google Scholar 

  • Paul D, Mangla S, Neogi S (2020b) Antibacterial study of CuO–NiO–ZnO trimetallic oxide nanoparticle. Mater Lett 271:127740. https://doi.org/10.1016/j.matlet.2020.127740

    Article  CAS  Google Scholar 

  • Qu Z, Liu P, Yang X, Wang F, Zhang W, Fei C (2016) Microstructure and characteristic of BiVO4 prepared under different pH values: photocatalytic efficiency and antibacterial activity. Materials (Basel) 9:129

    Article  PubMed  Google Scholar 

  • Rahman MA, Radhakrishnan R, Gopalakrishnan R (2018) Structural, optical, magnetic and antibacterial properties of Nd doped NiO nanoparticles prepared by co-precipitation method. J Alloys Compd 742:421–429

    Article  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976

    Article  CAS  PubMed  Google Scholar 

  • Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Clust Sci 30:1425–1434

    Article  CAS  Google Scholar 

  • Sahoo B, Sahu SK, Nayak S, Dhara D, Pramanik P (2012) Fabrication of magnetic mesoporous manganese ferrite nanocomposites as efficient catalyst for degradation of dye pollutants. Catal Sci Technol 2:1367–1374

    Article  CAS  Google Scholar 

  • Saito H, Sakakibara Y, Sakata A, Kurashige R, Murakami D, Kageshima H, Saito A, Miyazaki Y (2019) Antibacterial activity of lysozyme-chitosan oligosaccharide conjugates (LYZOX) against Pseudomonas aeruginosa Acinetobacter Baumannii and Methicillin-Resistant Staphylococcus aureus. PloS one 14:1–26

    Article  Google Scholar 

  • Sana S, Datta S, Biswas D, Sengupta D (2018) Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Biochim Biophys Acta—Biomembr 1860:579–585

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi KS, ur Rahman A, Tajuddin N, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett. https://doi.org/10.1186/s11671-018-2532-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A (2015) Review on zinc oxide nanoparticles : antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242

    Article  CAS  Google Scholar 

  • Subhan MA, Ahmed T, Uddin N, Azad AK, Begum K (2015) Synthesis, characterization, PL properties, photocatalytic and antibacterial activities of nano multi-metal oxide NiO·CeO2·ZnO. Spectrochim. Acta—Part A Mol Biomol Spectrosc 136:824–831

    Article  CAS  Google Scholar 

  • Tripathi N, Goshisht MK (2022) Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater 5:1391–1463

    Article  CAS  PubMed  Google Scholar 

  • Vaara M, Vaara T (1981) Outer membrane permeability barrier disruption by polymyxin in polymyxin-susceptible and -resistant Salmonella typhimurium. Antimicrob Agents Chemother 19:578–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivek S, Preethi S, Sundramoorthy AK, Suresh Babu K (2020) The composition dependent structure and catalytic activity of nanostructured Cu-Ni bimetallic oxides. New J Chem 44:9691–9698

    Article  CAS  Google Scholar 

  • Wang Z, Lee YH, Wu B, Horst A, Kang Y, Tang YJ, Chen DR (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80:525–529

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yi H, Chen X, Wang X (2013) Facile synthesis of a nano-structured nickel oxide electrode with outstanding pseudocapacitive properties. Electrochim Acta 105:353–361

    Article  Google Scholar 

  • Zhang L, Zhang L, Xu J (2020) Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.). Sci Rep 10:1–13

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Chemical Engineering, IIT Kharagpur for providing technical and financial support in the form of a research grant (as this work is a part of Doctoral thesis to IIT Kharagpur). The authors thank Prof. Dipankar Bandyopadhyay and the Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India their assistance in carrying out imaging analysis experiments. Also, the authors thank Mr. Jahar Mahala and Mr. Dhruba Sakha (IIT Kharagpur), Miss. Reena Dey, Dr. Srirupa Bhattacharyya and Dr. K. Dharamalingam (IIT Guwahati) for their invaluable assistance in the reported work. We also thank MeitY—grant no. 5(9)/2012-NANO for financial aids.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

DP and SN contributed to the conception and design of the experiments. DP performed the research. DP and AP analyzed the data. Imaging/Analytical tools: AP. DP wrote the manuscript. SN is the paper supervisor.

Corresponding author

Correspondence to Sudarsan Neogi.

Ethics declarations

Conflict of interest

All authors declare they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 785 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, D., Pandey, A. & Neogi, S. Bacterial cell permeability study by metal oxide and mixed metal oxide nanoparticles: analysis of the factors contributing to the antibacterial activity of nanoparticles. World J Microbiol Biotechnol 39, 281 (2023). https://doi.org/10.1007/s11274-023-03712-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03712-2

Keywords

Navigation