Skip to main content

Advertisement

Log in

Review on recent advances in the properties, production and applications of microbial dextranases

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Dextranase is a type of hydrolase that is responsible for catalyzing the breakdown of high-molecular-weight dextran into low-molecular-weight polysaccharides. This process is called dextranolysis. A select group of bacteria and fungi, including yeasts and likely certain complex eukaryotes, produce dextranase enzymes as extracellular enzymes that are released into the environment. These enzymes join dextran’s α-1,6 glycosidic bonds to make glucose, exodextranases, or isomalto-oligosaccharides (endodextranases). Dextranase is an enzyme that has a wide variety of applications, some of which include the sugar business, the production of human plasma replacements, the treatment of dental plaque and its protection, and the creation of human plasma replacements. Because of this, the quantity of studies carried out on worldwide has steadily increased over the course of the past couple of decades. The major focus of this study is on the most current advancements in the production, administration, and properties of microbial dextranases. This will be done throughout the entirety of the review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors will supply the relevant data in response to reasonable requests.

References

  • Abdel-Naby MA, Ismail A-MS, Abdel-Fattah AM, Abdel-Fattah AF (1999) Preparation and some properties of immobilized Penicillium funiculosum 258 dextranase. Process Biochem 34:391–398

    CAS  Google Scholar 

  • Abdelwahed NA, Ahmed EF, El-Gammal EW, Hawas UWJB (2014) Application of statistical design for the optimization of dextranase production by a novel fungus isolated from Red Sea sponge. Biotech 4:533–544

    Google Scholar 

  • Arimitsu H, Lee J-C, Sakaguchi Y, Hayakawa Y, Hayashi M, Nakaura M, Takai H, Lin S-N, Mukamoto M, Murphy TJC, Immunology V (2004) Vaccination with recombinant whole heavy chain fragments of Clostridium botulinum type C and D neurotoxins. Clinical and Vaccine Immunology. 11:496–502

  • Arnold WN, Nguyen TBP, Mann L C.J.A.o.m., 1998. Purification and characterization of a dextranase from Sporothrix schenckii. Arch Microbiol 170, 91–98

  • Aslan Y, Ghafour BI (2021) Immobilization of Chaetomium erraticum dextranase (CED) by adsorption on carboxylated multi walled carbon nanotubes (c-MWCNT). Research Square

  • Azeem AMA, Yadav AN, Yadav N, Usmani Z (2021) Industrially important Fungi for Sustainable Development: Biodiversity and Ecological Perspectives, vol 1. Springer

  • Bertrand E, Pierre G, Delattre C, Gardarin C, Bridiau N, Maugard T, Štrancar A, Michaud PJCp (2014) Dextranase immobilization on epoxy CIM® disk for the production of isomaltooligosaccharides from dextran. Carbohydr Polym 111:707–713

    CAS  PubMed  Google Scholar 

  • Bhatia S, Bhakri G, Arora M, Uppal S, Batta SJST (2010) Dextranase production from Paecilomyces lilacinus and its application for dextran removal from sugarcane juice. Sugar Tech 12:133–138

    CAS  Google Scholar 

  • Brown CF, Inkerman PAJJoA, Chemistry F (1992) Specific method for quantitative measurement of the total dextran content of raw sugar. J Agric Food Chem 40:227–233

    CAS  Google Scholar 

  • Cai R, Lu M, Fang Y, Jiao Y, Zhu Q, Liu Z, Wang SJ A.o.m., 2014. Screening, production, and characterization of dextranase from Catenovulum sp. Ann Microbiol 64, 147–155

  • Caldwell RC, Sandham HJ, Mann WV Jr, Finn SB, Formicola AJ (1971) The effect of a dextranase mouthwash on dental plaque in young adults and children. J Am Dent Association 82:124–131. J.T.J.o.t.A.D.A

    CAS  Google Scholar 

  • Chalane S, Delattre C, Michaud P, Lebert A, Gardarin C, Kothari D, Creuly C, Goyal A, Štrancar A, Pierre GJPB (2017) Optimized endodextranase-epoxy CIM® disk reactor for the continuous production of molecular weight-controlled prebiotic isomalto-oligosaccharides. Process Biochem 58:105–113

    CAS  Google Scholar 

  • Chang G-w, LI HUANGZ-w Z.-d., LIANG, D.-f.J.B.B., 2019. Research progress on the development and application of dextranase. Biotechnol Bull 35, 196

  • Chen H-L, Lu Y-H, Lin J-J, Ko L-Y (2001) Effects of isomalto-oligosaccharides on bowel functions and indicators of nutritional status in constipated elderly men. J Am Coll Nutr 20:44–49. J.J.o.t.A.C.o.N

    CAS  PubMed  Google Scholar 

  • Chung C, Day DJPS (2004) Efficacy of Leuconostoc mesenteroides (ATCC 13146) isomaltooligosaccharides as a poultry prebiotic. Poult Sci 83:1302–1306

    CAS  PubMed  Google Scholar 

  • Covacevich MT, Richards GNJCR (1978) Purification of intracellular dextranases and d-glucosidases from Pseudomonas UQM 733. Carbohydr Res 64:169–180

    CAS  PubMed  Google Scholar 

  • Covacevich MT, Richards GNJCR (1979) Modes of action of intracellular dextranase and three oligoglucanases from Pseudomonas UQM733. Carbohydr Res 70:283–293

    CAS  PubMed  Google Scholar 

  • Das DK, Dutta SK (1996) Purification, biochemical characterization and mode of action of an extracellular endo-dextranase from the culture filtrate of Penicillium lilacinum. Int J Biochem Cell Biology 28:107–113

    CAS  Google Scholar 

  • Deng T, Feng Y, Xu L, Tian X, Lai X, Lyu M, Wang SJPE, Purification (2020) Expression, purification and characterization of a cold-adapted dextranase from marine bacteria and its ability to remove dental plaque. Protien Expression and Purification 174:105678

    CAS  Google Scholar 

  • Dong D, Wang X, Deng T, Ning Z, Tian X, Zu H, Ding Y, Wang C, Wang S, Lyu MJFML (2021) A novel dextranase gene from the marine bacterium Bacillus aquimaris S5 and its expression and characteristics. FEMS Microbiol Lett 368:fnab007

    CAS  PubMed  Google Scholar 

  • Ebaya MMA, El-Mowafy M, El-Sokkary A, Hassan MM (2020) R.J.I.J.o.M., Purification, Characterization, and Biocatalytic and Antibiofilm Activity of a Novel Dextranase from Talaromyces sp. International Journal of Microbiology 2020, 1–11

  • Eggleston G, Monge A, Montes B, Stewart DJST (2009) Application of dextranases in sugarcane factory: overcoming practical problems. Sugar Tech 11:135–141

    CAS  Google Scholar 

  • Erhardt FA, Jördening H-JJJob (2007) Immobilization of dextranase from Chaetomium erraticum. Joural of Biotechnology 131:440–447

    CAS  Google Scholar 

  • Fadel M, Zohri ANA, El-Dean AMK, Auob A, Deiab BJ (2016) Enhancing ethanol yield from sugar cane molasses fermentation by addition of depolymerising enzymes. 6:291–294

  • Fadel M, Motawe FH, Roshdy AMJEPJ (2020) Production of dextranase by aspergillus fumigatus NRC-F103 and its application in cane juice treatment and enhancing ethanol production from sugarcane molasses. Egypt Pharm J 19:283

    Google Scholar 

  • Fan Y, Yi J, Zhang Y, Yokoyama WJFc (2018) Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem 239:1210–1218

    CAS  PubMed  Google Scholar 

  • Ferreira MP, Talman V, Torrieri G, Liu D, Marques G, Moslova K, Liu Z, Pinto JF, Hirvonen J, Ruskoaho HJ (2018) Dual-drug delivery using dextran‐functionalized nanoparticles targeting cardiac fibroblasts for cellular reprogramming. Adv Funct Mater 28:1705134

    Google Scholar 

  • Flemming H-C, Wingender JJWs (2001) technology, Relevance of microbial extracellular polymeric substances (EPSs)-Part I: Structural and ecological aspects. Water Science and Technology 43, 1–8

  • Fukumoto J, TSUJI H, TSURU D (1971) Studies on mold dextranases: 1. Penicillium luteum dextranase: its production and some enzymatic properties. J Biochem 69:1113–1121

    CAS  PubMed  Google Scholar 

  • Gan W, Zhang H, Zhang Y, Hu X (2014) Biosynthesis of oligodextrans with different mw by synergistic catalysis of dextransucrase and dextranase. Carbohydr Polym 112:387–395

    CAS  PubMed  Google Scholar 

  • Garcia B, Margolles E, Roca H, Mateu D, Raices M, Gonzales ME, Herrera L, Delgado J (1996) Cloning and sequencing of a dextranase-encoding cDNA from Penicillium minioluteum. FEMS Microbiol Lett 143:175–183

    CAS  PubMed  Google Scholar 

  • García B, Rodríguez E (2000) Carbon source regulation of a dextranase gene from the filamentous fungus Penicillium minioluteum. Curr Genet 37:396–402

    PubMed  Google Scholar 

  • Gibbons R, Fitzgerald R (1969) Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol 98:341–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson GR (1998) Dietary modulation of the human gut microflora using prebiotics. Br J Nutr 80:S209–S212

    CAS  PubMed  Google Scholar 

  • Guzman GYF, Hurtado GB, Ospina SA (2018) New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91.2. 98 based on binding product and dextranase hydrolysis. J Biotechnol 265:8–14

    Google Scholar 

  • Hattori A, Ishibashi K (1981) Screening of dextranase producing microorganisms. Agricultural Biol Chem 45:2347–2349

    CAS  Google Scholar 

  • Hayacibara MF, Koo H, Smith AMV, Kopec LK, Scott-Anne K, Cury JA, Bowen WH (2004) The influence of mutanase and dextranase on the production and structure of glucans synthesized by streptococcal glucosyltransferases. Carbohydr Res 339:2127–2137

    CAS  PubMed  Google Scholar 

  • Hild E, Brumbley SM, O’Shea MG, Nevalainen H, Bergquist PL (2007) A Paenibacillus sp. dextranase mutant pool with improved thermostability and activity. Appl Microbiol Biotechnol 75:1071–1078

    CAS  PubMed  Google Scholar 

  • Hoster H, Iwasita T, Baumgärtner H, Vielstich W (2001) Pt–Ru model catalysts for anodic methanol oxidation: influence of structure and composition on the reactivity. Phys Chem Chem Phys 3:337–346

    CAS  Google Scholar 

  • Huang R, Zhong L, Xie F, Wei L, Gan L, Wang X, Liao A (2019) Purification, characterization and degradation performance of a novel dextranase from Penicillium cyclopium CICC-4022. Int J Mol Sci 20:1360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hultin E, Bohman G, Santesson J, Holmberg P, Eriksson G, Blinc R (1967) Statistical calculations of the accuracy of the Michaelis constant from viscosimetric determinations of polymetaphosphatase and dextranase activity. Acta Chem Scand 21:1575–1580

    CAS  Google Scholar 

  • Hutson D, Weigel H (1963) Studies on dextrans and dextranases. 4. Mechanism of the actions of intra-and extra-cellular mould hydrolases. Biochem J 88:588

    PubMed  PubMed Central  Google Scholar 

  • James P (2017) The British Pharmacopoeia

  • Janson J (1975) Studies on dextran-degrading enzymes. Isolation and identification of a dextranase-producing strain of Cytophaga johnsonii and studies on the formation of the surface-bound enzyme. Microbiology 88:205–208

    Google Scholar 

  • Japanese-Pharmacopoeia T (2016) The Japanese Pharmacopoeia seventeenth Edition

  • Jeong WS, Lee Y-R, Hong S-J, Choi S-J, Choi J-H, Park S-Y, Woo E-J, Kim YM, Park BR (2019) Carboxy-terminal region of a thermostable CITase from thermoanaerobacter thermocopriae has the ability to produce long isomaltooligosaccharides. J Microbiol Biotechnol 29:1938–1946

    CAS  PubMed  Google Scholar 

  • Jiao Y-L, Wang S-J, Lv M-S, Jiao B-H, Li W-J, Fang Y-W, Liu S (2014) Characterization of a marine-derived dextranase and its application to the prevention of dental caries. J Ind Microbiol Biotechnol 41:17–26

    CAS  PubMed  Google Scholar 

  • Jiménez ER (2009) Dextranase in sugar industry: a review. Sugar tech 11:124–134

    Google Scholar 

  • Jubran AS, Zeinalabdeen MA, Zwain MF (2021) Broad-spectrum inhibition for biofilm producers in dental decay by dextrnase purified from Lactobacillus fermentum. NVEO-NATURAL VOLATILES ESSENTIAL OILS Journal, pp 3510–3519

  • Juntarachot N, Kantachote D, Peerajan S, Sirilun S, Chaiyasut C (2020) Optimization of fungal dextranase production and its antibiofilm activity, encapsulation and stability in toothpaste. Molecules 25:4784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalikova E, Susi P, Usanov N, Korpela T (2003) Purification and properties of extracellular dextranase from a Bacillus sp. J Chromatogr B 796:315–326

    CAS  Google Scholar 

  • Khalikova E, Susi P, Korpela T (2005) Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev 69:306–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Day DF (1994) A new process for the production of clinical dextran by mixed-culture fermentation of Lipomyces starkeyi and Leuconostoc mesenteroides. Enzyme Microb Technol 16:844–848

    CAS  PubMed  Google Scholar 

  • Kim Y-M, Kim D (2010) Characterization of novel thermostable dextranase from Thermotoga lettingae TMO. Appl Microbiol Biotechnol 85:581–587

    CAS  PubMed  Google Scholar 

  • Kim YM, Yamamoto E, Kang MS, Nakai H, Saburi W, Okuyama M, Mori H, Funane K, Momma M, Fujimoto Z (2012) Bacteroides thetaiotaomicron VPI-5482 glycoside hydrolase family 66 homolog catalyzes dextranolytic and cyclization reactions. FEBS J 279:3185–3191

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Takagi S, Shiota M, Mitsuishi Y, Matsuda K (1983) An isomaltotriose-producing dextranase from Flavobacterium sp. M-73: purification and properties. Agricultural Biol Chem 47:2585–2593

    CAS  Google Scholar 

  • Koenig DW, Day DF (1989) Induction of Lipomyces starkeyi dextranase. Appl Environ Microbiol 55:2079–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo S, Kubota H, Ohnishi Y, Morita T, Matsuya T, Matsushiro A (1993) Expression and secretion of an Arthrobacter dextranase in the oral bacterium Streptococcus gordonii. Infect Immun 61:4375–4381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai X, Liu X, Liu X, Deng T, Feng Y, Tian X, Lyu M, Wang S (2019) The marine Catenovulum agarivorans MNH15 and dextranase: removing dental plaque. Mar Drugs 17:592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson AM, Andersson R, Ståhlberg J, Kenne L, Jones TA (2003a) Dextranase from Penicillium minioluteum: reaction course, crystal structure, and product complex. Structure 11:1111–1121

    CAS  PubMed  Google Scholar 

  • Larsson CL, Rönnlund U, Johansson G, Dahlgren L (2003b) Veganism as status passage: the process of becoming a vegan among youths in Sweden. Appetite 41:61–67

    PubMed  Google Scholar 

  • Lee JH, Nam SH, Park HJ, Kim Y-M, Kim N, Kim G, Seo E-S, Kang S-S, Kim D (2010) Biochemical characterization of dextranase from Arthrobacter oxydans and its cloning and expression in Escherichia coli. Food Sci Biotechnol 19:757–762

    CAS  Google Scholar 

  • Lee SY, Khoiroh I, Ooi CW, Ling TC, Show PL (2017) Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep Purif Reviews 46:291–304

    CAS  Google Scholar 

  • Li J, Tan B, Mai K (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291:35–40

    CAS  Google Scholar 

  • Li H, Jiang Dian-zhuo, Wang Zhi-jun, Zhang Xiao-hong, Wang F, Zhou Y (2015) Pharmacopoeia of the People’s Republic of China (2015 Edition, Part Two). Chinese Pharmaceutical Journal, 1757–1760

  • Lin Y, Chen J, Zhou X, Li Y (2021) Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol 47:667–677

    CAS  PubMed  Google Scholar 

  • Lin Q, Wang H, Xu Y, Dong D, Miao Q, Lu J, Lyu M, Wang S (2022) Study of key amino acid residues of GH66 dextranase for producing high-degree polymerized isomaltooligosaccharides and improving of thermostability. Front Bioeng Biotechnol 10:961776

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Deng T, Liu X, Lai X, Feng Y, Lyu M, Wang S (2020) Isomalto-oligosaccharides produced by endodextranase Shewanella sp. GZ-7 from sugarcane plants. Nat Prod Commun 15:1934578X20953286

    CAS  Google Scholar 

  • Liu Y, Gong J-S, Marshall G, Su C, Hall M, Li H, Xu G-Q, Shi J-S, Xu Z-H (2023) Protein engineering of NADH pyrophosphatase for efficient biocatalytic production of reduced nicotinamide mononucleotide. Front Bioeng Biotechnol 11:1159965

    PubMed  PubMed Central  Google Scholar 

  • Ma B (ed) wei, c.g., Miao, y.x., hui, h., zhen, t., hua, y., yanghanhai, nan, h., feng, l.d., 2014. Study on application of glucanase in raw Sugar Refining production. Guangxi Sugar Industry, 18–21

  • Mahmoud K, Gibriel A, Amin AA, Nessrien M, Yassien N, El Banna HA (2014) Microbial production and characterization of dextranase. Int J Curr Microbiol App Sci 3:1095–1113

    Google Scholar 

  • Marotta M, Martino A, De Rosa A, Farina E, Cartenı M, De Rosa M (2002) Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes. Process Biochem 38:101–108

    CAS  Google Scholar 

  • Masuelli MA (2014) Dextrans in aqueous solution. Experimental review on intrinsic viscosity measurements and temperature effect. J Polym Biopolymer Phys Chem 1:13–21

    Google Scholar 

  • Mizuno T, Kurotani T, Komatsu Y, Kawanokuchi J, Kato H, Mitsuma N, Suzumura A (2004) Neuroprotective role of phosphodiesterase inhibitor ibudilast on neuronal cell death induced by activated microglia. Neuropharmacol 46, 404–411

  • Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M (2021) Bacterial α-glucan and branching sucrases from GH70 family: Discovery, structure–function relationship studies and engineering. Microorganisms 9:1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naessens M, Cerdobbel A, Soetaert W, Vandamme E (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860

    CAS  Google Scholar 

  • Netsopa S, Niamsanit S, Araki T, Kongkeitkajorn MB, Milintawisamai N (2019) Purification and characterization including dextran hydrolysis of dextranase from aspergillus allahabadii X26. Sugar Tech 21:329–340

    CAS  Google Scholar 

  • Ning Z, Dong D, Tian X, Zu H, Tian X, Lyu M, Wang S (2021) Alkalic dextranase produced by marine bacterium Cellulosimicrobium sp. PX02 and its application. J Basic Microbiol 61:1002–1015

    CAS  PubMed  Google Scholar 

  • Okazawa Y, Miyazaki T, Yokoi G, Ishizaki Y, Nishikawa A, Tonozuka T (2015) Crystal structure and mutational analysis of isomalto-dextranase, a member of glycoside hydrolase family 27. J Biol Chem 290:26339–26349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okazawa G, Tajima S, Komatsu H (2017) Gradual development of visual texture-selective properties between macaque areas V2 and V4. Cereb Cortex 27:4867–4880

    PubMed  Google Scholar 

  • Okushima M, Sugino D, Kouno Y, Nakano S, Miyahara J, Toda H, Kubo S, Matsushiro AJTJ (1991) Molecular cloning and nucleotide sequencing of the Arthrobacter dextranase gene and its expression in Escherichia coli and Streptococcus sanguis. 66:173–187J.o

  • Otsuka R, Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59:28–36

    CAS  PubMed  Google Scholar 

  • Patel S, Goyal A (2011) Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol 27:1119–1128

    CAS  Google Scholar 

  • Peng M, Li H, Luo Z, Kong J, Wan Y, Zheng L, Zhang Q, Niu H, Vermorken A, Van de Ven W (2015) Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale 7:11155–11162

    CAS  PubMed  Google Scholar 

  • Phong WN, Show PL, Le CF, Tao Y, Chang J-S, Ling TC (2018) Improving cell disruption efficiency to facilitate protein release from microalgae using chemical and mechanical integrated method. Biochem Eng J 135:83–90

    CAS  Google Scholar 

  • Pierro DF, Zanvit A, Nobili P, Risso P, Fornaini C (2015) Cariogram outcome after 90 days of oral treatment with Streptococcus salivarius M18 in children at high risk for dental caries: results of a randomized, controlled study. Clinical, Cosmetic investigational dentistry, pp 107–113

  • Prabhu K, Madhu (1984) Studies on dextranase from Penicillium aculeatum. Enzym Microb Technol 6:217–220

    Google Scholar 

  • Prete R, Alam MK, Perpetuini G, Perla C, Pittia P, Corsetti A (2021) Lactic acid bacteria exopolysaccharides producers: a sustainable tool for functional foods. Foods 10:1653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pulkownik A, Walker GJ (1977) Purification and substrate specificity of an endo-dextranase of Streptococcus mutans K1-R. Carbohydr Res 54:237–251

    CAS  Google Scholar 

  • Purushe S, Prakash D, Nawani NN, Dhakephalkar P, Kapadnis B (2012) Biocatalytic potential of an alkalophilic and thermophilic dextranase as a remedial measure for dextran removal during sugar manufacture. Bioresour Technol 115:2–7

    CAS  PubMed  Google Scholar 

  • Qiu Y-x, Mao M-y, Jiang D, Hong X, Yang Y-m, Hu T (2016) Co-operative effect of exogenous dextranase and sodium fluoride on multispecies biofilms. J Dent Sci 11:41–47

    PubMed  Google Scholar 

  • Ren W, Cai R, Yan W, Lyu M, Fang Y, Wang S (2018) Purification and characterization of a biofilm-degradable dextranase from a marine bacterium. Mar Drugs 16:51

    PubMed  PubMed Central  Google Scholar 

  • Riahi N, Liberelle B, Henry O, De Crescenzo G (2017) Impact of RGD amount in dextran-based hydrogels for cell delivery. Carbohydr Polym 161:219–227

    CAS  PubMed  Google Scholar 

  • Ru W-J, Xia B-B, Zhang Y-X, Yang J-W, Zhang H-B, Hu X-Q (2022) Development of thermostable dextranase from Streptococcus mutans (SmdexTM) through in silico design employing B-factor and Cartesian-∆∆G. J Biotechnol 360:142–151

    CAS  PubMed  Google Scholar 

  • Senpuku H, Yonezawa H, Yoneda S, Suzuki I, Nagasawa R, Narisawa N (2018) SMU. 940 regulates dextran-dependent aggregation and biofilm formation in Streptococcus mutans. Mol Oral Microbiol 33:47–58

    CAS  PubMed  Google Scholar 

  • Sharma M, Sangwan RS, Khatkar BS, Singh SP (2019) Alginate–pectin co-encapsulation of dextransucrase and dextranase for oligosaccharide production from sucrose feedstocks. Bioprocess Biosystems Engineering 42:1681–1693

    CAS  PubMed  Google Scholar 

  • Shimizu E, Unno T, Ohba M, OKADA G (1998) Purification and characterization of an isomaltotriose-producing endo-dextranase from a Fusarium sp. Bioscience Biotechnol Biochem 62:117–122

    CAS  Google Scholar 

  • Shuai J, Zhang L, Hu Z, Jia C, Niu M, Zhao S, Xu Y (2023) Role of the in-situ-produced dextran by lactic acid bacteria in the texture modification of pea flour pastes. Food Res Int 165:112570

    CAS  PubMed  Google Scholar 

  • Son G, Nguyen TTH, Park B, Kwak S, Jin J, Kim Y-M, Moon Y-H, Park S, Kim S-B, Kim D (2020) Synthesis and characterization of stevioside having low degree polymerized glucosides using dextransucrase and dextranase. Enzyme Microb Technol 132:109412

    CAS  PubMed  Google Scholar 

  • Sufiate BL, Soares FE, Gouveia AS, Moreira SS, Cardoso EF, Tavares GP, Braga FR, ARAÚJO JV, QUEIROZ, J.H (2018) Statistical tools application on dextranase production from Pochonia chlamydosporia (VC4) and its application on dextran removal from sugarcane juice. Anais da Academia Brasileira de Ciências 90:461–470

    CAS  PubMed  Google Scholar 

  • Sun R, Liu W, Kirk TV, Chen XD (2023) A dual-labeled fluorescent probe for visualization of dextranase activity in a simulated food digestion system. Food Chem 405:134744

    CAS  PubMed  Google Scholar 

  • Suzuki N, Kishine N, Fujimoto Z, Sakurai M, Momma M, Ko J-A, Nam S-H, Kimura A, Kim Y-M (2015) Crystal structure of thermophilic dextranase from Thermoanaerobacter pseudethanolicus. J Biochem 159:331–339

    PubMed  Google Scholar 

  • Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tingirikari JMR, Gomes WF, Rodrigues S (2017) Efficient production of prebiotic gluco-oligosaccharides in orange juice using immobilized and co-immobilized dextransucrase. Appl Biochem Biotechnol 183:1265–1281

    CAS  PubMed  Google Scholar 

  • Tsuru D, HIRAOKA N, FUKUMOTO, J (1972) Studies on mold dextranases: IV. Substrate specificity of aspergillus carneus dextranase. J Biochem 71:653–660

    CAS  PubMed  Google Scholar 

  • Ullah SF, Souza AA, de Freitas SM, Noronha EF (2022) Characterisation of biomass degrading xylanolytic enzymes of Penicillium chrysogenum produced using sugarcane bagasse. Process Biochem 112:62–70

    CAS  Google Scholar 

  • Virgen-Ortíz J, Ibarra-Junquera V, Escalante-Minakata P, Ornelas-Paz JdJ, Osuna-Castro J, González-Potes A (2015) Kinetics and thermodynamic of the purified dextranase from Chaetomium erraticum. J Mol Catal B: Enzymatic 122:80–86

    Google Scholar 

  • Vittorio O, Voliani V, Faraci P, Karmakar B, Iemma F, Hampel S, Kavallaris M, Cirillo G (2014) Magnetic catechin–dextran conjugate as targeted therapeutic for pancreatic tumour cells. J Drug Target 22:408–415

    CAS  PubMed  Google Scholar 

  • Volkov PV, Gusakov AV, Rubtsova EA, Rozhkova AM, Matys VY, Nemashkalov VA, Sinitsyn AP (2019) Properties of a recombinant GH49 family dextranase heterologously expressed in two recipient strains of Penicillium species. Biochimie 157:123–130

    CAS  PubMed  Google Scholar 

  • Wang D, Lu M, Wang S, Jiao Y, Li W, Zhu Q, Liu Z (2014a) Purification and characterization of a novel marine Arthrobacter oxydans KQ11 dextranase. Carbohydr Polym 106:71–76

    CAS  PubMed  Google Scholar 

  • Wang D, Lu M, Wang X, Jiao Y, Fang Y, Liu Za, Wang S (2014b) Improving stability of a novel dextran-degrading enzyme from marine Arthrobacter oxydans KQ11. Carbohydrate polymers 103, pp.294–299

  • Wang Y-Q, Huang J-X, Zhou W-W (2020) Isolation, characterization and cytoprotective effects against UV radiation of exopolysaccharide produced from Paenibacillus polymyxa PYQ1. J Biosci Bioeng 130:283–289

    CAS  PubMed  Google Scholar 

  • Wang H, Lin Q, Liu M, Ding W, Weng N, Ni H, Lu J, Lyu M, Wang S (2023) Molecular Docking and Site-Directed mutagenesis of GH49 Family Dextranase for the Preparation of High-Degree polymerization isomaltooligosaccharide. Biomolecules 13:300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Chen J, Xu L, Liu N, Yang J, Wang S (2023) Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis. AMB Express 13:1–10

    Google Scholar 

  • Widenbring R, Frenning G, Malmsten M (2014) Chain and pore-blocking effects on matrix degradation in protein-loaded microgels. Biomacromolecules 15:3671–3678

    CAS  PubMed  Google Scholar 

  • Wu D-T, Zhang H-B, Huang L-J, Hu X-Q (2011) Purification and characterization of extracellular dextranase from a novel producer, Hypocrea lixii F1002, and its use in oligodextran production. Process Biochem 46, 1942–1950

  • Wu Z, Lu J, Wang X, Hu B, Ye H, Fan J, Abid M, Zeng X (2014) Optimization for production of exopolysaccharides with antitumor activity in vitro from Paecilomyces hepiali. Carbohydr Polym 99:226–234

    CAS  PubMed  Google Scholar 

  • Wynter C, Patel B, Bain P, De Jersey J, Hamilton S, Inkerman P (1996) A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol Lett 140:271–276

    CAS  PubMed  Google Scholar 

  • Wynter C, Chang M, De Jersey J, Patel B, Inkerman P, Hamilton S (1997) Isolation and characterization of a thermostable dextranase. Enzym Microb Technol 20:242–247

    Google Scholar 

  • Xu Y, Liu G, Liang D, Yi X, Liu Y, Zeng L, Chang G (2016) Research progress in formation and detection method of Dextran in Sugarcane Production. Agricultural Sci Technol 17:1692

    Google Scholar 

  • Xu Y, Wang H, Lin Q, Miao Q, Liu M, Ni H, Zhang L, Lyu M, Wang S (2023) Immobilization of Dextranase obtained from the Marine Cellulosimicrobium sp. Y1 on nanoparticles: Nano-TiO2 improving Hydrolysate Properties and enhancing reuse. Nanomaterials 13:1065

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Zhou N, Tian Y (2018) Purification, characterization, and biocatalytic potential of a novel dextranase from Chaetomium globosum. Biotechnol Lett 40:1407–1418

    CAS  PubMed  Google Scholar 

  • Yang J, Zhang X, Lu Q, Wang L, Hu X, Zhang H (2023) Preparation, flocculation and application in sugar refining of eco-friendly dextran-polylysine complex flocculant. Sep Purif Technol 306:122673

    CAS  Google Scholar 

  • Yao M-f, Chang G-w, Wei H-q, Zhang Z-w, Huang Z-w, Lin Y-s, Luo R-z, Zhong Z-c, Liang D-f (2015) Experimental study on application of dextranase in Cane Sugar manufacture. Sugarcane and Canesugar 06:18–22

    Google Scholar 

  • Yi L, Sun X, Du K, Ouyang Y, Wu C, Xu N, Linhardt RJ, Zhang Z (2015) UP-HILIC-MS/MS to determine the action pattern of Penicillium sp. Dextranase J Am Soc Mass Spectrom 26:1174–1185

    CAS  PubMed  Google Scholar 

  • Zhang Y-Q, Li R-H, Zhang H-B, Wu M, Hu X-Q (2017) Purification, characterization, and application of a thermostable dextranase from Talaromyces pinophilus. J Ind Microbiol Biotechnol 44:317–327

    CAS  PubMed  Google Scholar 

  • Zhang X-y, Chen Y-p, Han J, Mo J, Dong P-f, Zhuo Y-h, Feng Y (2019) Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering. Int J Biol Macromol 136:1247–1257

    CAS  PubMed  Google Scholar 

  • Zhao J, Wang L, Wei X, Li K, Liu JJC, Biodiversity (2021) Food-grade expression and characterization of a dextranase from chaetomium gracile suitable for sugarcane juice clarification. 18, e2000797

  • Zohra RR, Aman A, Ansari A, Haider MS, Qader SAU (2015) Purification, characterization and end product analysis of dextran degrading endodextranase from Bacillus licheniformis KIBGE-IB25. Int J Biol Macromol 78:243–248

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors are grateful to the Natural Science Foundation of Anhui Province (grant no. 2108085MC120).

Author information

Authors and Affiliations

Authors

Contributions

Baiza Mir wrote the main manuscript text. Jingwen Yang revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jingwen Yang or Hongbin Zhang.

Ethics declarations

Conflict of interest

None of the authors have any potential financial conflicts of interest associated with this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, B., Yang, J., Li, Z. et al. Review on recent advances in the properties, production and applications of microbial dextranases. World J Microbiol Biotechnol 39, 242 (2023). https://doi.org/10.1007/s11274-023-03691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03691-4

Keywords

Navigation