Skip to main content
Log in

Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacterial harmful algal blooms (CHABs) are a global environmental concern that encompasses public health issues, water availability, and water quality owing to the production of various secondary metabolites (SMs), including cyanotoxins in freshwater, brackish water, and marine ecosystems. The frequency, extent, magnitude, and duration of CHABs are increasing globally. Cyanobacterial species traits and changing environmental conditions, including anthropogenic pressure, eutrophication, and global climate change, together allow cyanobacteria to thrive. The cyanotoxins include a diverse range of low molecular weight compounds with varying biochemical properties and modes of action. With the application of modern molecular biology techniques, many important aspects of cyanobacteria are being elucidated, including aspects of their diversity, gene-environment interactions, and genes that express cyanotoxins. The toxicological, environmental, and economic impacts of CHABs strongly advocate the need for continuing, extensive efforts to monitor cyanobacterial growth and to understand the mechanisms regulating species composition and cyanotoxin biosynthesis. In this review, we critically examined the genomic organization of some cyanobacterial species that lead to the production of cyanotoxins and their characteristic properties discovered to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adamski M, Wołowski K, Kaminski A, Hindáková A (2020) Cyanotoxin cylindrospermopsin producers and the catalytic decomposition process: a review. Harmful Algae 98:101894

    CAS  PubMed  Google Scholar 

  • Alexova R, Fujii M, Birch D, Cheng J, Waite TD, Ferrari BC, Neilan BA (2011) Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation. Environ Microbiol 13(4):1064–1077

    CAS  PubMed  Google Scholar 

  • Almela P, Casero C, Justel A, Quesada A (2022) Ubiquity of dominant cyanobacterial taxa along glacier retreat in the Antarctic Peninsula. FEMS Microbiol Ecol 98(4):fiac029

    PubMed  Google Scholar 

  • Al-Sammak MA, Rogers DG, Hoagland KD (2015) Acute β-N-Methylamino-L-alanine toxicity in a mouse model. J Toxicol 739746(10):29

    Google Scholar 

  • Bácsi I, Vasas G, Surányi G, M-Hamvas M, Máthé C, Tóth E, Grigorszky I, Gáspár A, Tóth S, Borbely G (2006) Alteration of cylindrospermopsin production in sulfate-or phosphate-starved cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Lett 259(2):303–310

    PubMed  Google Scholar 

  • Ballot A, Cerasino L, Hostyeva V, Cirés S (2016) Variability in the sxt gene clusters of PSP toxin producing Aphanizomenon gracile strains from Norway, Spain, Germany and North America. Plos One 11(12):e0167552

    PubMed  Google Scholar 

  • Baron-Sola A, Ouahid Y, del Campo FF (2012) Detection of potentially producing cylindrospermopsin and microcystin strains in mixed populations of cyanobacteria by simultaneous amplification of cylindrospermopsin and microcystin gene regions. Ecotoxicol Environ Saf 75:102–108

    CAS  PubMed  Google Scholar 

  • Barón-Sola Á, Gutiérrez-Villanueva MA, del Campo FF, Sanz-Alférez S (2013) Characterization of Aphanizomenon ovalisporum amidinotransferase involved in cylindrospermopsin synthesis. MicrobiolOpen 2(3):447–458

    Article  CAS  Google Scholar 

  • Bar-Yosef Y, Sukenik A, Hadas O, Viner-Mozzini Y, Kaplan A (2010) Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Curr Biol 20(17):1557–1561

    CAS  PubMed  Google Scholar 

  • Bernard C, Ballot A, Thomazeau S, Maloufi S, Furey A, Mankiewicz‐Boczek J, Pawlik‐ Skowrońska B, Capelli C, Salmaso N (2017) Appendix 2: Cyanobacteria associated with the production of cyanotoxins. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, Chichester, pp 501–525

    Google Scholar 

  • Boopathi T, Ki J-S (2014) Impact of environmental factors on the regulation of cyanotoxin production. Toxins 6(7):1951–1978

    PubMed  PubMed Central  Google Scholar 

  • Bormans M, Lengronne M, Brient L, Duval C (2014) Cylindrospermopsin accumulation and release by the benthic cyanobacterium Oscillatoria sp. PCC 6506 under different light conditions and growth phases. Bull Environ Contam Toxicol 92(2):243–247

    CAS  PubMed  Google Scholar 

  • Botes DP, Wessels PL, Kruger H, Runnegar MT, Santikarn S, Smith RJ, Barna JC, Williams DH (1985) Structural studies on cyanoginosins-LR,-YR,-YA, and-YM, peptide toxins from Microcystis aeruginosa. J Chem Soc, Perkin Transactions 1:2747–2748

    Google Scholar 

  • Bouaïcha N, Miles CO, Beach DG, Labidi Z, Djabri A, Benayache NY, Nguyen-Quang T (2019) Structural diversity characterization and toxicology of microcystins. Toxins 11(12):714

    Article  CAS  PubMed  Google Scholar 

  • Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez Yerena JA, Hrouzek P, Sobotka R, Henderson WM, Schmieder P, Williams SM, Lauderdale JD, Wilde HD, Gerrin W, Kust A, Washington JW, Wagner C, Geier B, Liebeke M, Enke H, Niedermeyer THJ, Wilde SB (2021) Hunting the eagle killer: a cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 371(6536):9050

    Google Scholar 

  • Bruno M, Ploux O, Metcalf JS, Mejean A, Pawlik-Skowrońska B, Furey A (2017) Anatoxin-a, homoanatoxin-a, and natural analogues. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, Chichester, pp 138–147

    Google Scholar 

  • Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E (2017) Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 91(3):1049–1130

    CAS  PubMed  Google Scholar 

  • Burford MA, Davis TW, Orr PT, Sinha R, Willis A, Neilan BA (2014) Nutrient-related changes in the toxicity of field blooms of the cyanobacterium Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 89(1):135–148

    CAS  PubMed  Google Scholar 

  • Burford MA, Willis A, Chuang A, Man X, Orr PT (2018) Recent insights into physiological responses to nutrients by the cylindrospermopsin producing cyanobacterium Cylindrospermopsis raciborskii. J Oceanol Limnol 36(4):1032–1039

    CAS  Google Scholar 

  • Caixach J, Flores C, Spoof L, Meriluoto J, Schmidt W, Mazur-Marzec H, Hiskia A, Kaloudis T, Furey A (2017) Liquid chromatography-mass spectrometry. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. Wiley, Chichester, pp 218–257

    Google Scholar 

  • Caller T, Henegan P, Stommel E (2018) The potential role of BMAA in neurodegeneration. Neurotox Res 33(1):222–226

    CAS  PubMed  Google Scholar 

  • Camargo S, Valladares A, Flores E, Herrero A (2012) Transcription activation by NtcA in the absence of consensus NtcA-binding sites in an Anabaena heterocyst differentiation gene promoter. J Bacteriol 194(11):2939–2948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capelli C, Ballot A, Cerasino L, Papini A, Salmaso N (2017) Biogeography of bloom-forming microcystin producing and non-toxigenic populations of Dolichospermum lemmermannii (Cyanobacteria). Harmful Algae 67:1–12

    CAS  PubMed  Google Scholar 

  • Carillo S, Pieretti G, Bedini E, Parrilli M, Lanzetta R, Corsaro MM (2014) Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix FP1. Carbohyd Res 388:73–80

    CAS  Google Scholar 

  • Carmichael WW, Boyer GL (2016) Health impacts from cyanobacteria harmful algae blooms: Implications for the North American Great Lakes. Harmful Algae 54:194–212

    PubMed  Google Scholar 

  • Carmichael WW, Gorham PR (1978) Anatoxins from clones of Anabaena flos-aquae isolated from lakes of western Canada: Internationale Vereinigung Für Theoretische Und Angewandte Limnologie: Mitteilungen 21(1):285–295

    CAS  Google Scholar 

  • Carmichael WW, Biggs DF, Gorham PR (1975) Toxicology and pharmacological action of Anabaena flos-aquae toxin. Science 187(4176):542–544

    CAS  PubMed  Google Scholar 

  • Casero MC, Ballot A, Agha R, Quesada A, Cirés S (2014) Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae 37:28–37

    CAS  Google Scholar 

  • Catherine A, Bernard C, Spoof L, Bruno M (2017) Microcystins and nodularins. In: Meriluoto J, Spoof L, Codd J (eds) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. Wiley, Chichester, pp 109–126

    Google Scholar 

  • Chapman A, Foss A (2020) GreenWater Laboratories Potentially Toxigenic (PTOX) Cyanobacteria List.

  • Chen Y, Shen D, Fang D (2013) Nodularins in poisoning. Clin Chim Acta 425:18–29

    CAS  PubMed  Google Scholar 

  • Chen L, Chen J, Zhang X, Xie P (2016) A review of reproductive toxicity of microcystins. J Hazard Mater 301:381–399

    CAS  PubMed  Google Scholar 

  • Chen L, Hu Y, He J, Chen J, Giesy JP, Xie P (2017) Responses of the proteome and metabolome in livers of zebrafish exposed chronically to environmentally relevant concentrations of microcystin-LR. Environ Sci Technol 51(1):596–607

    CAS  PubMed  Google Scholar 

  • Chen L, Giesy JP, Adamovsky O, Svirčev Z, Meriluoto J, Codd GA, Mijovic B, Shi T, Tuo X, Li S-C, Pan B-Z, Chen J, Xie P (2021a) Challenges of using blooms of Microcystis spp. in animal feeds: a comprehensive review of nutritional, toxicological and microbial health evaluation. Sci Total Environ 764:142319

    CAS  PubMed  Google Scholar 

  • Chen L, Shi T, Wang Y-T, He J, Zhao X, Wang Y-K, Giesy JP, Chen F, Chen Y, Tuo X (2021b) Effects of acute exposure to microcystins on hypothalamic-pituitary-adrenal (HPA),-gonad (HPG) and-thyroid (HPT) axes of female rats. Sci Total Environ 778:145196

    CAS  PubMed  Google Scholar 

  • Chernoff N, Hill D, Diggs D, Faison B, Francis B, Lang J, Larue M, Le T-T, Loftin KA, Lugo J (2017) A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans. J Toxicol Environ Heal, Part B 20(4):183–229

    CAS  Google Scholar 

  • Chernoff N, Hill D, Lang J, Schmid J, Le T, Farthing A, Huang H (2020) The comparative toxicity of 10 microcystin congeners administered orally to mice: clinical effects and organ toxicity. Toxins 12(6):403

    Article  CAS  PubMed  Google Scholar 

  • Chorus I, Welker M (2021) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Taylor & Francis, Abingdon-on-Thames

    Google Scholar 

  • Christensen VG, Khan E (2020) Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci Total Environ 736:139515

    CAS  PubMed  Google Scholar 

  • Christiansen G, Fastner J, Erhard M, Börner T, Dittmann E (2003) Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185(2):564–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen G, Molitor C, Philmus B, Kurmayer R (2008) Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 25(8):1695–1704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cirés S, Delgado A, González-Pleiter M, Quesada A (2017) Temperature influences the production and transport of saxitoxin and the expression of sxt genes in the cyanobacterium Aphanizomenon gracile. Toxins 9(10):322

    PubMed  PubMed Central  Google Scholar 

  • Codd GA, Nunn PB (2019) Cyanotoxin production beyond the cyanobacteria. Toxicon 168:93–94

    CAS  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, Metcalf JS, Morrison LF, Codd GA, Bergman B (2005) Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci 102(14):5074–5078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cusick KD, Sayler GS (2013) An overview on the marine neurotoxin, saxitoxin: genetics, molecular targets, methods of detection and ecological functions. Mar Drugs 11(4):991–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • D’Agostino PM, Al-Sinawi B, Mazmouz R, Muenchhoff J, Neilan BA, Moffitt MC (2020) Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression. BMC Microbiol 20(1):1–11

    Google Scholar 

  • D’Agostino P, Moffitt MC, Neilan B (2014) Current knowledge of paralytic shellfish toxin biosynthesis, molecular detection and evolution. In: Rossini GP (ed) Toxins and biologically active compounds from microalgae. CRC Press, Boca Raton, pp. 251–280

  • D’Agostino PM, Song X, Neilan BA, Moffitt MC (2016) Proteogenomics of a saxitoxin-producing and non-toxic strain of Anabaena circinalis (cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 18(2):461–476

    CAS  PubMed  Google Scholar 

  • D'Anglada LV, Donohue JM, Strong J, Hawkins B (2015) Health effects support document for the cyanobacterial toxin cylindrospermopsin. US Environmental Protection Agency, Office of Water, Health and Ecological Criteria division, Washington

  • Davis DA, Mondo K, Stern E, Annor AK, Murch SJ, Coyne TM, Brand LE, Niemeyer ME, Sharp S, Bradley WG (2019) Cyanobacterial neurotoxin BMAA and brain pathology in stranded dolphins. PLoS ONE 14(3):e0213346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delcourt N, Claudepierre T, Maignien T, Arnich N, Mattei C (2018) Cellular and molecular aspects of the β-N-Methylamino-l-alanine (BMAA) mode of action within the neurodegenerative pathway: facts and controversy. Toxins 10(1):6

    Google Scholar 

  • Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ (2019) Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 140:206–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin J, Edwards O, Gorham P, Hunter N, Pike R, Stavric B (1977) Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can J Chem 55(8):1367–1371

    CAS  Google Scholar 

  • Dias E, Pereira P, Franca S (2002) Production of paralytic shellfish toxins by Aphanizomenon sp. LMECYA 31 (cyanobacteria). J Phycol 38(4):705–712

    CAS  Google Scholar 

  • Dick GJ, Duhaime MB, Evans JT, Errera RM, Godwin CM, Kharbush JJ, Nitschky HS, Powers MA, Vanderploeg HA, Schmidt KC (2021) The genetic and ecophysiological diversity of Microcystis. Environ Microbiol 23(12):7278–7313

    PubMed  Google Scholar 

  • Díez-Quijada L, Prieto AI, Guzmán-Guillén R, Jos A, Cameán AM (2019) Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: a review. Food Chem Toxicol 125:106–132

    PubMed  Google Scholar 

  • Dittmann E, Neilan BA, Erhard M, Von Döhren H, Börner T (1997) Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26(4):779–787

    CAS  Google Scholar 

  • Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37(1):23–43

    CAS  PubMed  Google Scholar 

  • Dittmann E, Gugger M, Sivonen K, Fewer DP (2015) Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends Microbiol 23(10):642–652

    CAS  PubMed  Google Scholar 

  • Downing S, Banack SA, Metcalf JS, Cox PA, Downing TG (2011) Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine. Toxicon 58(2):187–194

    CAS  PubMed  Google Scholar 

  • Du X, Liu H, Yuan L, Wang Y, Ma Y, Wang R, Chen X, Losiewicz MD, Guo H, Zhang H (2019) The diversity of cyanobacterial toxins on structural characterization, distribution and identification: a systematic review. Toxins 11(9):530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durai P, Batool M, Choi S (2015) Structure and effects of cyanobacterial lipopolysaccharides. Mar Drugs 13(7):4217–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dvořák P, Hašler P, Casamatta DA, Poulíčková A (2021) Underestimated cyanobacterial diversity: trends and perspectives of research in tropical environments. Fottea 21(2):110–127

    Google Scholar 

  • EPA (2019) Cyanobacteria and Cyanotoxins: Information for Drinking Water Systems.

  • Farhana A, Khan YS (2021) Biochemistry, lipopolysaccharide StatPearls [Internet]. StatPearls Publishing, Florida

    Google Scholar 

  • Fernandes KA, Ferraz HG, Vereau F, Pinto E (2020) Availability of guanitoxin in water samples containing Sphaerospermopsis torques-reginae cells submitted to dissolution tests. Pharmaceuticals 13(11):402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fewer DP, Wahlsten M, Österholm J, Jokela J, Rouhiainen L, Kaasalainen U, Rikkinen J, Sivonen K (2013) The genetic basis for O-acetylation of the microcystin toxin in cyanobacteria. Chem Biol 20(7):861–869

    CAS  PubMed  Google Scholar 

  • Fiore MF, de Lima ST, Carmichael WW, McKinnie SM, Chekan JR, Moore BS (2020) Guanitoxin, re-naming a cyanobacterial organophosphate toxin. Harmful Algae 92:101737

    PubMed  Google Scholar 

  • Gaysina LA, Saraf A, Singh P (2019) Cyanobacteria in diverse habitats Cyanobacteria. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Gaysina LA, Eliaš M, Gontcharov AA (2018) Biodiversity of algae and cyanobacteria in volcanic soils near Mutnovsky and Gorely volcanoes (Kamchatka peninsula). In: The 1st International Conference on North East Asia Biodiversity. Vladivostok. 137–139

  • Ginn H, Pearson L, Neilan B (2010) NtcA from Microcystis aeruginosa PCC 7806 is autoregulatory and binds to the microcystin promoter. Appl Environ Microbiol 76(13):4362–4368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gobler CJ, Burkholder JM, Davis TW, Harke MJ, Johengen T, Stow CA, Van de Waal DB (2016) The dual role of nitrogen supply in controlling the growth and toxicity of cyanobacterial blooms. Harmful Algae 54:87–97

    CAS  PubMed  Google Scholar 

  • González-Blanco C, Dörr FA, Albuquerque R, Onuki J, Pinto E (2020) Alternative isolation protocol for desulfo and zwitterionic cylindrospermopsin alkaloids and comparison of their toxicity in hepG2 cells. Molecules 25(13):3027

    PubMed  PubMed Central  Google Scholar 

  • Graham JL, Loftin KA, Meyer MT, Ziegler AC (2010) Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ Sci Technol 44(19):7361–7368

    CAS  PubMed  Google Scholar 

  • Gupta N, Bhaskar A, Rao P (2002) Growth characteristics and toxin production in batch cultures of Anabaena flos-aquae: effects of culture media and duration. World J Microbiol Biotechnol 18(1):29–35

    CAS  Google Scholar 

  • Harke MJ, Gobler CJ (2013) Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS ONE 8(7):e69834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harke MJ, Gobler CJ (2015) Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium, Microcystis aeruginosa. BMC Genom 16(1):1–18

    Google Scholar 

  • Hedman CJ, Krick WR, Karner Perkins DA, Harrahy EA, Sonzogni WC (2008) New measurements of cyanobacterial toxins in natural waters using high performance liquid chromatography coupled to tandem mass spectrometry. J Environm Qual 37(5):1817–1824

    CAS  Google Scholar 

  • Holtcamp W (2012) The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Heal Perspect 120(3):A110–A116.

    Google Scholar 

  • Honkanen RE, Dukelow M, Zwiller J, Moore RE, Khatra BS, Boynton AL (1991) Cyanobacterial nodularin is a potent inhibitor of type 1 and type 2A protein phosphatases. Mol Pharmacol 40(4):577–583

    CAS  PubMed  Google Scholar 

  • Horst GP, Sarnelle O, White JD, Hamilton SK, Kaul RB, Bressie JD (2014) Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa. Water Res 54:188–198

    CAS  PubMed  Google Scholar 

  • Hou X, Feng L, Dai Y, Hu C, Gibson L, Tang J, Lee Z, Wang Y, Cai X, Liu J (2022) Global mapping reveals increase in lacustrine algal blooms over the past decade. Nat Geosci 15(2):130–134

    CAS  Google Scholar 

  • Huang I-S, Zimba PV (2019) Cyanobacterial bioactive metabolites—a review of their chemistry and biology. Harmful Algae 86:139–209

    CAS  PubMed  Google Scholar 

  • Hudon C, Gagnon P, Poirier Larabie S, Gagnon C, Lajeunesse A, Lachapelle M, Quilliam MA (2016) Spatial and temporal variations of a saxitoxin analogue (LWTX-1) in Lyngbya wollei (Cyanobacteria) mats in the St. Lawrence River (Québec, Canada). Harmful Algae 57:69–77.

    CAS  PubMed  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JM, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16(8):471–483

    CAS  PubMed  Google Scholar 

  • Humbert JF (2009) CHAPTER 27 - Toxins of Cyanobacteria. In: Gupta RC (ed) Handbook of Toxicology of Chemical Warfare Agents. Academic Press, San Diego, pp 371–379

    Google Scholar 

  • Jasser I, Panou M, Khomutovska N, Sandzewicz M, Panteris E, Niyatbekov T, Łach Ł, Kwiatowski J, Kokociński M, Gkelis S (2022) Cyanobacteria in hot pursuit: Characterization of cyanobacteria strains, including novel taxa, isolated from geothermal habitats from different ecoregions of the world. Molecular Phylogenet Evol 170:107454

    CAS  Google Scholar 

  • Jiang Y, Song G, Pan Q, Yang Y, Li R (2015) Identification of genes for anatoxin-a biosynthesis in Cuspidothrix issatschenkoi. Harmful Algae 46:43–48

    Google Scholar 

  • Jones MR, Pinto E, Torres MA, Dörr F, Mazur-Marzec H, Szubert K, Tartaglione L, Dell’Aversano C, Miles CO, Beach DG (2021) CyanoMetDB, a comprehensive public database of secondary metabolites from cyanobacteria. Water Res 196:117017

    CAS  PubMed  Google Scholar 

  • Kaebernick M, Rohrlack T, Christoffersen K, Neilan BA (2001) A spontaneous mutant of microcystin biosynthesis: genetic characterization and effect on Daphnia. Environ Microbiol 3(11):669–679

    CAS  PubMed  Google Scholar 

  • Kaebernick M, Dittmann E, Börner T, Neilan BA (2002) Multiple alternate transcripts direct the biosynthesis of microcystin, a cyanobacterial nonribosomal peptide. Appl Environ Microbiol 68(2):449–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellmann R, Mihali TK, Jeon YJ, Pickford R, Pomati F, Neilan BA (2008) Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. Appl Environ Microbiol 74(13):4044–4053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kellmann R, Stüken A, Orr RJ, Svendsen HM, Jakobsen KS (2010) Biosynthesis and molecular genetics of polyketides in marine dinoflagellates. Mar Drugs 8(4):1011–1048

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopf M, Möke F, Bauwe H, Hess WR, Hagemann M (2015) Expression profiling of the bloom-forming cyanobacterium Nodularia CCY9414 under light and oxidative stress conditions. ISME 9(10):2139–2152

    CAS  Google Scholar 

  • Kotut K, Ballot A, Krienitz L (2006) Toxic cyanobacteria and their toxins in standing waters of Kenya: implications for water resource use. J Water Health 4(2):233–245

    CAS  PubMed  Google Scholar 

  • Lage S, Annadotter H, Rasmussen U, Rydberg S (2015) Biotransfer of β-N-methylamino-L-alanine (BMAA) in a eutrophicated freshwater lake. Mar Drugs 13(3):1185–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Legleiter CJ, King TV, Carpenter KD, Hall NC, Mumford AC, Slonecker T, Graham JL, Stengel VG, Simon N, Rosen BH (2022) Spectral mixture analysis for surveillance of harmful algal blooms (SMASH): a field-, laboratory-, and satellite-based approach to identifying cyanobacteria genera from remotely sensed data. Remote Sens Environ 279:113089.

    Google Scholar 

  • Liu J, Van Oosterhout E, Faassen EJ, Lürling M, Helmsing NR, Van de Waal DB (2016) Elevated pCO2 causes a shift towards more toxic microcystin variants in nitrogen-limited Microcystis aeruginosa. FEMS Microbiol Ecol 92(2):159

    Google Scholar 

  • Llewellyn LE (2006) Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep 23(2):200–222

    CAS  PubMed  Google Scholar 

  • Llewellyn L, Negri A, Robertson A (2006) Paralytic shellfish toxins in tropical oceans. Toxin Rev 25(2):159–196

    CAS  Google Scholar 

  • Ludolph AC, Spencer PS (1996) Toxic models of upper motor neuron disease. J Neurol Sci 139:53–59

    PubMed  Google Scholar 

  • Ma J, He F, Qi T, Sun Z, Shen M, Cao Z, Meng D, Duan H, Luo J (2022) Thirty-four-year record (1987–2021) of the spatiotemporal dynamics of algal blooms in Lake Dianchi from multi-source remote sensing insights. Remote Sens 14(16):4000

    Google Scholar 

  • Maldonado RF, Sá-Correia I, Valvano MA (2016) Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 40(4):480–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantas MJQ, Nunn PB, Codd GA, Barker D (2022) Genomic insights into the biosynthesis and physiology of the cyanobacterial neurotoxin 3-N-methyl-2, 3-diaminopropanoic acid (BMAA). Phytochemistry 200:113198

    CAS  PubMed  Google Scholar 

  • Martin C, Codd GA, Siegelman HW, Weckesser J (1989) Lipopolysaccharides and polysaccharides of the cell envelope of toxic Microcystis aeruginosa strains. Arch Microbiol 152(1):90–94

    CAS  Google Scholar 

  • Martin RM, Moniruzzaman M, Stark GF, Gann ER, Derminio DS, Wei B, Hellweger FL, Pinto A, Boyer GL, Wilhelm SW (2020) Episodic decrease in temperature increases mcy gene transcription and cellular microcystin in continuous cultures of Microcystis aeruginosa PCC 7806. Front Microbiol 11:601864

    PubMed  PubMed Central  Google Scholar 

  • Mazur Marzec H, Meriluoto J, Pliński M, Szafranek J (2006) Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Commun Mass Spectrom 20(13):2023–2032

    CAS  Google Scholar 

  • Méjean A, Mann S, Maldiney T, Vassiliadis G, Lequin O, Ploux O (2009) Evidence that biosynthesis of the neurotoxic alkaloids anatoxin-a and homoanatoxin-a in the cyanobacterium Oscillatoria PCC 6506 occurs on a modular polyketide synthase initiated by L-proline. J Am Chem Soc 131(22):7512–7513

    PubMed  Google Scholar 

  • Méjean A, Paci G, Gautier V, Ploux O (2014) Biosynthesis of anatoxin-a and analogues (anatoxins) in cyanobacteria. Toxicon 91:15–22

    PubMed  Google Scholar 

  • Merel S, Walker D, Chicana R, Snyder S, Baurès E, Thomas O (2013) State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–327

    CAS  PubMed  Google Scholar 

  • Meriluoto J, Blaha L, Bojadzija G, Bormans M, Brient L, Codd GA, Drobac D, Faassen EJ, Fastner J, Hiskia A, Ibelings BW, Kaloudis T, Kokocinski M, Kurmayer R, Pantelić D, Quesada A, Salmaso N, Tokodi N, Triantis TM, Visser PM, Svirčev Z (2017a) Toxic cyanobacteria and cyanotoxins in European waters – recent progress achieved through the CYANOCOST action and challenges for further research. Adv Oceanogr Limnol 8:161-178

    Article  Google Scholar 

  • Meriluoto J, Spoof L, Codd GA (eds) (2017b) Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, Chichester

    Google Scholar 

  • Metcalf JS, Codd GA (2017) Immunoassays and other antibody applications. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. Wiley, Chichester, pp 263–266

    Google Scholar 

  • Metcalf JS, Banack SA, Lindsay J, Morrison LF, Cox PA, Codd GA (2008) Co-occurrence of β-N-methalamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990–2004. Environ Microbiol 10(3):702-708

  • Mihali TK, Kellmann R, Muenchhoff J, Barrow KD, Neilan BA (2008) Characterization of the gene cluster responsible for cylindrospermopsin biosynthesis. Appl Environ Microbiol 74(3):716–722

    CAS  PubMed  Google Scholar 

  • Mikalsen B, Boison G, Skulberg OM, Fastner J, Davies W, Gabrielsen TM, Rudi K, Jakobsen KS (2003) Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185(9):2774–2785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moffitt MC, Neilan BA (2004) Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl Environ Microbiol 70(11):6353–6362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moraes MA, Rodrigues RA, Schlüter L, Podduturi R, Jørgensen NO, Calijuri MC (2021) Influence of environmental factors on occurrence of cyanobacteria and abundance of saxitoxin-producing cyanobacteria in a subtropical drinking water reservoir in Brazil. Water 13(12):1716

    CAS  Google Scholar 

  • Mulder DW, Kurland LT, Iriarte LL (1954) Neurologic diseases on the island of Guam. U S Armed Forces Med J 5(12):1724–1739

    CAS  PubMed  Google Scholar 

  • Murray B, Ertekin E, Dailey M, Soulier NT, Shen G, Bryant DA, Perez-Fernandez C, DiRuggiero J (2022) Adaptation of cyanobacteria to the endolithic light spectrum in hyper-arid deserts. Microorganisms 10(6):1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neilan BA, Pearson LA, Muenchhoff J, Moffitt MC, Dittmann E (2013) Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15(5):1239–1253

    CAS  PubMed  Google Scholar 

  • Ngwa FF, Madramootoo CA, Jabaji S (2014) Comparison of cyanobacterial microcystin synthetase (mcy) E gene transcript levels, mcy E gene copies, and biomass as indicators of microcystin risk under laboratory and field conditions. Microbiol Open 3(4):411–425

    CAS  Google Scholar 

  • Nishizawa T, Asayama M, Fujii K, Harada K-i, Shirai M (1999) Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126(3):520–529

    CAS  PubMed  Google Scholar 

  • Nishizawa T, Ueda A, Asayama M, Fujii K, Harada K-i, Ochi K, Shirai M (2000) Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127(5):779–789

    CAS  PubMed  Google Scholar 

  • Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS (2023) Freshwater cyanobacterial toxins cyanopeptides and neurodegenerative diseases. Toxins 15(3):233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunn PB (2017) 50 years of research on α-amino-β-methylaminopropionic acid (β-methylaminoalanine). Phytochemistry 144:271–281

    CAS  PubMed  Google Scholar 

  • Nwankwegu AS, Li Y, Huang Y, Wei J, Norgbey E, Sarpong L, Lai Q, Wang K (2019) Harmful algal blooms under changing climate and constantly increasing anthropogenic actions: the review of management implications. 3 Biotech 9:1–19

    Google Scholar 

  • Ohtani I, Moore RE, Runnegar MT (1992) Cylindrospermopsin: a potent hepatotoxin from the blue-green alga Cylindrospermopsis raciborskii. J Am Chem Soc 114(20):7941–7942

    CAS  Google Scholar 

  • Okino T, Matsuda H, Murakami M, Yamaguchi K (1993a) Microginin, an angiotensin-converting enzyme inhibitor from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett 34(3):501–504

    CAS  Google Scholar 

  • Okino T, Murakami M, Haraguchi R, Munekata H, Matsuda H, Yamaguchi K (1993b) Micropeptins A and B, plasmin and trypsin inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron Lett 34(50):8131–8134

    CAS  Google Scholar 

  • Okino T, Matsuda H, Murakami M, Yamaguchi K (1995) New microviridins, elastase inhibitors from the blue-green alga Microcystis aeruginosa. Tetrahedron 51(39):10679–10686

    CAS  Google Scholar 

  • Ongley SE, Pengelly JJ, Neilan BA (2016) Elevated Na+ and pH influence the production and transport of saxitoxin in the cyanobacteria Anabaena circinalis AWQC131C and Cylindrospermopsis raciborskii T 3. Environ Microbiol 18(2):427–438

    CAS  PubMed  Google Scholar 

  • Orr PT, Rasmussen JP, Burford MA, Eaglesham GK, Lennox SM (2010) Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs. Harmful Algae 9(3):243–254

    CAS  Google Scholar 

  • Otten TG, Paerl HW (2015) Health effects of toxic cyanobacteria in U.S. drinking and recreational waters: our current understanding and proposed direction. Curr Environ Health Rep 2(1):75–84

    CAS  PubMed  Google Scholar 

  • Otten TG, Paerl HW, Dreher TW, Kimmerer WJ, Parker AE (2017) The molecular ecology of Microcystis sp. blooms in the San Francisco Estuary. Environ Microbiol 19(9):3619–3637

    CAS  PubMed  Google Scholar 

  • Pearson LA, Hisbergues M, Börner T, Dittmann E, Neilan BA (2004) Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70(11):6370–6378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson LA, Barrow KD, Neilan BA (2007) Characterization of the 2-hydroxy-acid dehydrogenase McyI, encoded within the microcystin biosynthesis gene cluster of Microcystis aeruginosa PCC7806. J Biol Chem 282(7):4681–4692

    CAS  PubMed  Google Scholar 

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peary J, Gorham PR (1996) Influence of light and temperature on growth and toxin production by Anabaena Flosaquae NRC-44–1. J Phycol 2:1–3

  • Peng G, Martin RM, Dearth SP, Sun X, Boyer GL, Campagna SR, Lin S, Wilhelm SW (2018) Seasonally relevant cool temperatures interact with N chemistry to increase microcystins produced in lab cultures of Microcystis aeruginosa NIES-843. Environ Sci Technol 52(7):4127–4136

    CAS  PubMed  Google Scholar 

  • Perini F, Galluzzi L, Dell’Aversano C, Iacovo ED, Tartaglione L, Ricci F, Forino M, Ciminiello P, Penna A (2014) SxtA and sxtG gene expression and toxin production in the Mediterranean Alexandrium minutum (Dinophyceae). Mar Drugs 12(10):5258–5276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham T-L, Dao T-S, Shimizu K, Lan-Chi D-H, Utsumi M (2015) Isolation and characterization of microcystin-producing cyanobacteria from Dau Tieng Reservoir. Vietnam Nova Hedwigia 101(1–2):3–20

    Google Scholar 

  • Pierozan P, Cattani D, Karlsson O (2020) Hippocampal neural stem cells are more susceptible to the neurotoxin BMAA than primary neurons: effects on apoptosis, cellular differentiation, neurite outgrowth, and DNA methylation. Cell Death Dis 11(10):1–14

    Google Scholar 

  • Pimentel JS, Giani A (2014) Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl Environ Microbiol 80(18):5836–5843

    PubMed  PubMed Central  Google Scholar 

  • Popin RV, Delbaje E, de Abreu VAC, Rigonato J, Dörr FA, Pinto E, Sivonen K, Fiore MF (2020) Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond. Toxins 12(3):141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Preece EP, Hardy FJ, Moore BC, Bryan M (2017) A review of microcystin detections in estuarine and marine waters: environmental implications and human health risk. Harmful Algae 61:31–45

    CAS  Google Scholar 

  • Rantala-Ylinen A, Känä S, Wang H, Rouhiainen L, Wahlsten M, Rizzi E, Berg K, Gugger M, Sivonen K (2011) Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 77(20):7271–7278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rapala J, Sivonen K, Luukkainen R, Niemelä SI (1993) Anatoxin-a concentration in Anabaena and Aphanizomenon under different environmental conditions and comparison of growth by toxic and non-toxic strains—a laboratory study. J Appl Phycol 5(6):581–591

    CAS  Google Scholar 

  • Rapala J, Robertson A, Negri AP, Berg KA, Tuomi P, Lyra C, Erkomaa K, Lahti K, Hoppu K, Lepistö L (2005) First report of saxitoxin in Finnish lakes and possible associated effects on human health. Environ Toxicol 20(3):331–340

    CAS  Google Scholar 

  • Ricardo MG, Schwark M, Llanes D, Niedermeyer THJ, Westermann B (2021) Total synthesis of aetokthonotoxin, the cyanobacterial neurotoxin causing vacuolar myelinopathy. Chemistry 27(47):12032–12035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers EH, Hunter III ES, Moser VC, Phillips PM, Herkovits J, Muñoz L, Hall LL, Chernoff N (2005) Potential developmental toxicity of anatoxin-a, a cyanobacterial toxin. J Appl Toxicol 25(6):527–534

    Article  CAS  PubMed  Google Scholar 

  • Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K (2004) Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70(2):686–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saker ML, Neilan BA (2001) Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia. Appl Environ Microbiol 67(4):1839–1845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schantz EJ, Lynch JM, Vayvada G, Matsumoto K, Rapoport H (1966) The purification and characterization of the poison produced by Gonyaulax catenella in axenic culture. Biochemistry 5(4):1191–1195

    CAS  PubMed  Google Scholar 

  • Schembri MA, Neilan BA, Saint CP (2001) Identification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii. Environ Toxicol 16(5):413–421

    CAS  Google Scholar 

  • Scherer PI, Raeder U, Geist J, Zwirglmaier K (2017) Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa. MicrobiolOpen 6(1):e00393

    Google Scholar 

  • Schirrmeister BE, Gugger M, Donoghue PC (2015) Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58(5):769–785

    PubMed  PubMed Central  Google Scholar 

  • Sevilla E, Martin-Luna B, Vela L, Bes MT, Fillat MF, Peleato ML (2008) Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10(10):2476–2483

    CAS  PubMed  Google Scholar 

  • Sevilla E, Martin-Luna B, Bes MT, Fillat MF, Peleato ML (2012) An active photosynthetic electron transfer chain required for mcyD transcription and microcystin synthesis in Microcystis aeruginosa PCC7806. Ecotoxicology 21(3):811–819

    CAS  PubMed  Google Scholar 

  • Shalev-Alon G, Sukenik A, Livnah O, Schwarz R, Kaplan A (2002) A novel gene encoding amidinotransferase in the cylindrospermopsin producing cyanobacterium Aphanizomenon ovalisporum. FEMS Microbiol Letts 209(1):87–91

    CAS  Google Scholar 

  • Shalev-Malul, Lieman‐Hurwitz J, Viner‐Mozzini Y, Sukenik A, Gaathon A, Lebendiker M, Kaplan A (2008) An AbrB‐like protein might be involved in the regulation of cylindrospermopsin production by Aphanizomenon ovalisporum. Environ Microbiol 10(4):988–999

  • Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, De Marsac NT, Rippka R (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci 110(3):1053–1058

    CAS  PubMed  Google Scholar 

  • Silva-Stenico ME, Silva CSP, Lorenzi AS, Shishido TK, Etchegaray A, Lira SP, Moraes LAB, Fiore MF (2011) Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity. Microbiol Res 166(3):161–175

    CAS  PubMed  Google Scholar 

  • Sipari H, Rantala-Ylinen A, Jokela J, Oksanen I, Sivonen K (2010) Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Appl Environ Microbiol 76(12):3797–3805

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skulberg OM, Skulberg R, Carmichael WW, Andersen RA, Matsunaga S, Moore RE (1992) Investigations of a neurotoxic oscillatorialean strain (Cyanophyceae) and its toxin Isolation and characterization of homoanatoxin-a. Environ Toxicol Chem 11(3):321–329

    CAS  Google Scholar 

  • Smith D, Macrae M, Kleinman P, Jarvie H, King K, Bryant R (2019) The latitudes, attitudes, and platitudes of watershed phosphorus management in North America. J Environ Qual 48(5):1176–1190

    CAS  PubMed  Google Scholar 

  • Snyder DS, Brahamsha B, Azadi P, Palenik B (2009) Structure of compositionally simple lipopolysaccharide from marine Synechococcus. J Bacteriol 191(17):5499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto-Liebe K, López-Cortés XA, Fuentes-Valdes JJ, Stucken K, Gonzalez-Nilo F, Vásquez M (2013) In silico analysis of putative paralytic shellfish poisoning toxins export proteins in cyanobacteria. PLoS ONE 8(2):e55664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spoof L, Catherine A (2017) Appendix 3: Tables of microcystins and nodularins. In: Meriluoto J, Spoof L, Codd GA (eds) Handbook of cyanobacterial monitoring and cyanotoxin analysis. Wiley, Chichester, pp 526–537

    Google Scholar 

  • Srivastava A, Ko S-R, Ahn C-Y, Oh H-M, Ravi AK, Asthana RK (2016) Microcystin biosynthesis and mcyA expression in geographically distinct Microcystis strains under different nitrogen, phosphorus, and boron regimes. BioMed Res Int 2016:5985987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stucken K, John U, Cembella A, Soto-Liebe K, Vásquez M (2014) Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsis raciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins 6(6):1896–1915

    PubMed  PubMed Central  Google Scholar 

  • Stüken A, Riobó P, Franco J, Jakobsen KS, Guillou L, Figueroa RI (2015) Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains. Front Microbiol 6:404

    PubMed  PubMed Central  Google Scholar 

  • Svirčev Z, Lalić D, Bojadžija Savić G, Tokodi N, Drobac Backović D, Chen L, Meriluoto J, Codd GA (2019) Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Arch Toxicol 93(9):2429–2481

    Article  CAS  PubMed  Google Scholar 

  • Tao S, Wang S, Song L, Gan N (2020) Understanding the differences in the growth and toxin production of anatoxin-producing Cuspidothrix issatschenkoi cultured with inorganic and organic N sources from a new perspective: carbon/nitrogen metabolic balance. Toxins 12(11):724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas N, Meteyer C, Sileo L, Haliaeetus leucocephalus, (1998) Epizootic vacuolar myelinopathy of the central nervous system of bald eagles. Vet Pathol 35(6):479–487

    CAS  PubMed  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7(10):753–764

    CAS  PubMed  Google Scholar 

  • Tonk L, Van De Waal DB, Slot P, Huisman J, Matthijs HC, Visser PM (2008) Amino acid availability determines the ratio of microcystin variants in the cyanobacterium Planktothrix agardhii. FEMS Microbiol Ecol 65(3):383–390

    CAS  PubMed  Google Scholar 

  • Van de Waal DB, Verspagen JM, Lürling M, Van Donk E, Visser PM, Huisman J (2009) The ecological stoichiometry of toxins produced by harmful cyanobacteria: an experimental test of the carbon-nutrient balance hypothesis. Ecol Lett 12(12):1326–1335

    PubMed  Google Scholar 

  • Veerman J, Kumar A, Mishra DR (2022) Exceptional landscape-wide cyanobacteria bloom in Okavango Delta, Botswana in 2020 coincided with a mass elephant die-off event. Harmful Algae 111:102145

    CAS  PubMed  Google Scholar 

  • Vijayan D, Ray JG (2015) Ecology and diversity of cyanobacteria in Kuttanadu paddy wetlands, Kerala, India. Am J Plant Sci 6(18):2924

    CAS  Google Scholar 

  • Vilar MC, Rodrigues TF, Silva LO, Pacheco ABF, Ferrão-Filho AS, Azevedo SM (2021) Ecophysiological aspects and sxt genes expression underlying induced chemical defense in STX-producing Raphidiopsis raciborskii (Cyanobacteria) against the zooplankter Daphnia gessneri. Toxins 13(6):406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner ND, Osburn FS, Wang J, Taylor RB, Boedecker AR, Chambliss CK, Brooks BW, Scott JT (2019) Biological stoichiometry regulates toxin production in Microcystis aeruginosa (UTEX 2385). Toxins 11(10):601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D-Z, Zhang S-F, Zhang Y, Lin L (2016) Paralytic shellfish toxin biosynthesis in cyanobacteria and dinoflagellates: a molecular overview. J Proteom 135:132–140

    CAS  Google Scholar 

  • Wang S, Li J, Zhang B, Spyrakos E, Tyler AN, Shen Q, Zhang F, Kuster T, Lehmann MK, Wu Y (2018) Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sen Environ 217:444–460

    Google Scholar 

  • Wei N, Song L, Gan N (2021) Quantitative proteomic and microcystin production response of Microcystis aeruginosa to phosphorus depletion. Microorganisms 9(6):1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weise G, Drews G, Jann B, Jann K (1970) Identification and analysis of a lipopolysaccharide in cell walls of the blue-green alga Anacystis nidulans. Arch Mikrobiol 71(1):89–98

    CAS  PubMed  Google Scholar 

  • Weralupitiya C, Wanigatunge RP, Gunawardana D, Vithanage M, Magana-Arachchi D (2022) Cyanotoxins uptake and accumulation in crops: phytotoxicity and implications on human health. Toxicon 211:21–35

    CAS  PubMed  Google Scholar 

  • Whitton BA (Ed.) (2012) Ecology of cyanobacteria II: their diversity in space and time. Springer Science & Business Media, Dordrech

    Google Scholar 

  • Wiese M, D’Agostino PM, Mihali TK, Moffitt MC, Neilan BA (2010) Neurotoxic alkaloids: saxitoxin and its analogs. Mar Drugs 8(7):2185–2211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm SW, Bullerjahn GS, McKay RML (2020) The complicated and confusing ecology of Microcystis blooms. Mbio 11(3):e00529-e620

    PubMed  PubMed Central  Google Scholar 

  • Wimmer KM, Strangman WK, Wright JL (2014) 7-Deoxy-desulfo-cylindrospermopsin and 7-deoxy-desulfo-12-acetylcylindrospermopsin: Two new cylindrospermopsin analogs isolated from a Thai strain of Cylindrospermopsis raciborskii. Harmful Algae 37:203–206

    CAS  Google Scholar 

  • Wood SA, Rueckert A, Hamilton DP, Cary SC, Dietrich DR (2011) Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ Microbiol Repor 3(1):118–124

    CAS  Google Scholar 

  • World Health Organization (2020a) Cyanobacterial toxins: anatoxin-a and analogues. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2020b) Cyanobacterial toxins: cylindrospermopsins. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2020c) Cyanobacterial toxins: microcystins. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2020d) Cyanobacterial toxins: saxitoxins. World Health Organization, Geneva

    Google Scholar 

  • Zanchett G, Oliveira-Filho EC (2013) Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 5(10):1896–1917

    PubMed  PubMed Central  Google Scholar 

  • Zilliges Y, Kehr J-C, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Boerner T, Dittmann E (2011) The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6(3):e17615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer RK, Ferrer RP (2007) Neuroecology, chemical defense, and the keystone species concept. Biol Bull 213(3):208–225

    CAS  PubMed  Google Scholar 

Download references

Funding

Arif Bashir would like to acknowledge the Department of Science & Technology (DST), Science and Engineering Research Board (SERB), New Delhi, India for providing grant-in-aid under the National Postdoctoral fellowship scheme under the file number PDF/2017/001894. Liang Chen was supported by the Special Project for Social Development of Yunnan Province (grant number 202103AC100001), the Natural Science Basic Research Program of Shaanxi Province (grant number 2020JQ-615) and the National Natural Science Foundation of China (grant number 31901186).

Author information

Authors and Affiliations

Authors

Contributions

FB: designing, drafting, writing, and drawing figures; AB: editing of molecular-biology portion; NB: editing and logical inputs; LC: designing, editing and logical inputs; GAC, editing; BN, W-LX, LZ, VDR; TM, RSA: manuscript and logical inputs; BAG: concept designing, manuscript editing, and logical inputs. All authors have read and agreed with the published version of this manuscript.

Corresponding authors

Correspondence to Noureddine Bouaïcha, Liang Chen or Bashir Ahmad Ganai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, F., Bashir, A., Bouaïcha, N. et al. Cyanotoxins, biosynthetic gene clusters, and factors modulating cyanotoxin biosynthesis. World J Microbiol Biotechnol 39, 241 (2023). https://doi.org/10.1007/s11274-023-03652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03652-x

Keywords

Navigation