Skip to main content

Advertisement

Log in

Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The commercialization of fruits in markets generates a large amount of waste because they are perishable and have a short shelf life, so, they are discarded. This study aimed to provide a noble end to discarded fruits that have fermentable sugars. Banana, apple, mango and papaya residues were collected from supermarkets and underwent an enzymatic hydrolysis process. The ability of four pectinases, two amylases, one xylanase and one cellulase to release reducing sugars from fruit biomass before fermentation with two yeast strains (S. cerevisiae CAT-1 and S. cerevisiae Angel) for bioethanol production was investigated, obtaining a total of RS (Reducing sugar) of 268.08 mg/mL in banana residues. A fermentation with yeast S. cerevisiae CAT-1 resulted in 98% consumption of RS and the production of a total of 28.02 g/L of ethanol. Furthermore, fermentation with the yeast S. cerevisiae Angel, resulted in 97% RS consumption and 31.87 g/L ethanol production, which was the best result obtained throughout all the tests of hydrolysis, highlighting the banana residue as a promising biomass for the production of bioethanol.

Highlights

  • •We converted of fruit sugars to bioethanol;

  • We use alternative raw material for the production of biofuels;

  • We realized a screening of enzymes to be used in hydrolysis of fruit residues;

  • We studied mix of enzymes in the hydrolysis of fruit residues;

  • Yields of 268.08 mg/mL and 150.22 mg/mL of RS were obtained using the hydrolysis with enzyme Pectinex Ultra SP - L in the fruits Banana and Apple respectively;

  • We realized the fermentations using two different strains of yeast with similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Raw data is not available to download

References

  1. Saravanan A, Kumar PS, Jeevananthamd S, Karishma S, V DVN (2022) Recent advances and sustainable development of biofuel production from lignocellulosic biomass. Bioresour Technol 344:126203. https://doi.org/10.1016/j.biortech.2021.126203

    Article  CAS  PubMed  Google Scholar 

  2. Kumar M, Sun Y, Rathour R, Pandey A, Thakur IS, Tsang DCW (2020) Algae are potential feedstocks for the production of biofuels and value-added products: opportunities and challenges. Sci Total Environ 716:137116. https://doi.org/10.1016/j.scitotenv.2020.137116

    Article  CAS  PubMed  Google Scholar 

  3. Pocha CKR, Chia SR, Chia WY, Koyande AK, Nomanbhay S, Chew KW (2022) Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production. Chemosphere 290:133246. https://doi.org/10.1016/j.chemosphere.2021.133246

    Article  CAS  PubMed  Google Scholar 

  4. Lin CY, Lu C (2021) Development perspectives of promising lignocellulose feedstocks for the production of advanced generation biofuels: a review. Rev Renew sustainable energy 136:110445. https://doi.org/10.1016/j.rser.2020.110445

    Article  CAS  Google Scholar 

  5. Hingston ST, Noseworthy TJ (2020) On the epidemic of food waste: Idealized prototypes and aversion to misshaping fruits and vegetables. Food Qual preferences 86:103999. https://doi.org/10.1016/j.foodqual.2020.103999

    Article  Google Scholar 

  6. Panahi HKS, Dehhaghi M, Guillemin GJ, Gupta VK, Lam SS, Aghbashlo M, Tabatabaei M (2022) Bioethanol production from carbohydrate-rich food waste. Curr Opinions Food Sci 43:71–81. https://doi.org/10.1016/j.cofs.2021.11.001

    Article  CAS  Google Scholar 

  7. ABRAS - Associação Brasileira de Supermercados (2021) https://www.abras.com.br/. Accessed 01 October 2022

  8. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG (2018) Fruit and vegetable waste: Bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17:512–531. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee J, Singh R, Vijayaraghavan R, MacFarlane D, Patti AF, Arora A (2017) Bioactives from fruit processing waste: green approaches to valuable chemicals. Food Chem 225:10–22. https://doi.org/10.1016/j.foodchem.2016.12.093

    Article  CAS  PubMed  Google Scholar 

  10. Koubala BB, Christiaens S, Kansci G, Loey AMV, Hendrickx ME (2014) Isolation and structural characterization of papaya peel pectin. Food Res Int 55:215–221. https://doi.org/10.1016/j.foodres.2013.11.009

    Article  CAS  Google Scholar 

  11. Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM (2020) Fruit and vegetable waste management: Conventional and emerging approaches. J Environ Manage 265:110510. https://doi.org/10.1016/j.jenvman.2020.110510

    Article  CAS  PubMed  Google Scholar 

  12. Conesa C, Seguí L, Laguarda-Miró N, Fito P (2016) Microwaves are a pretreatment method for enhancing the enzymatic hydrolysis of pineapple industrial waste for bioethanol production. Food and bioproduct processing 100:203–213. https://doi.org/10.1016/j.fbp.2016.07.001

    Article  CAS  Google Scholar 

  13. Musci JJ, Montaña M, Rodríguez-Castellón E, Lick ID, Casella ML (2020) Selective aqueous-phase hydrogenation of glucose and xylose over ruthenium-based catalysts: Influence of the support. Mol Catal 495:111150. https://doi.org/10.1016/j.mcat.2020.111150

    Article  CAS  Google Scholar 

  14. Rempel A, Biolchi GN, Antunes ACF, Gutkoski JP, Treichel H, Colla LM (2021) Cultivation of microalgae in media containing emergent pollutants and effects on growth, chemical composition, and use of biomass for enzymatic hydrolysis. Bioenergy Res 14:265–277. https://doi.org/10.1007/s12155-020-10177-w

    Article  CAS  Google Scholar 

  15. Chitranshi R, Kapoor R (2021) Utilization of over-ripened fruit (waste fruit) for the eco-friendly production of ethanol. Int J Plant Res 33:270–276. https://doi.org/10.1007/s42535-020-00185-8

    Article  Google Scholar 

  16. Bayar N, Bouallegue T, Achour M, Kriaa M, Bougatef A, Kammoun R (2017) Ultrasonic extraction of pectin from Opuntia ficus indica cladodes after mucilage removal: optimization of experimental conditions and evaluation of chemical and functional properties. Food Chem 235:275–282. https://doi.org/10.1016/j.foodchem.2017.05.029

    Article  CAS  PubMed  Google Scholar 

  17. Rekha B, Saravanathamizhan R (2021) Preparation and characterization of biomass-based nanocatalysts for hydrolysis and fermentation of catalytic hydrolysates to bioethanol. Biomass Convers biorefineries 20:01207. https://doi.org/10.1007/s13399-020-01207-w

    Article  CAS  Google Scholar 

  18. Koupaie EH, Dahadha S, Lakeh AB, Azizi A, Elbeshbishy E (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production: a review. J Environ Manage 233:774–784. https://doi.org/10.1016/j.jenvman.2018.09.106

    Article  CAS  Google Scholar 

  19. Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, Sahu JN (2019) Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew Sustain Energy Rev 105:105–128. https://doi.org/10.1016/j.rser.2019.01.048

    Article  CAS  Google Scholar 

  20. Fakayode OA, Akpabli-Tsigbe NDK, Wahia H, Tu S, Ren M, Zhou C, Ma H (2021) Integrated bioprocess for bioethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis, and fermentation. Renewable Energy 180:258–270. https://doi.org/10.1016/j.renene.2021.08.057

    Article  CAS  Google Scholar 

  21. Abdulla R, Derman E, Ravintaran PT, Jambo SA (2018) Fuel ethanol production from papaya waste using immobilized Saccharomyces cerevisiae. Sanrem 11:112–123. http://drs.nio.org/drs/handle/2264/5162

    Google Scholar 

  22. Nieves DC, Ruiz HA, Cárdenas LZ, Alvarez GM, Aguilar CN, Ilyina A, Hernández JLM (2016) Enzymatic hydrolysis of chemically pretreated mango stem bark residues at high solid loading. Ind Crops Prod 83:500–508. https://doi.org/10.1016/j.indcrop.2015.12.079

    Article  CAS  Google Scholar 

  23. Borujeni NE, Karimi K, Denayer JFM, Kumar R (2022) Apple pomace biorefinery for ethanol, mycoprotein, and value-added biochemicals production by. Mucor indicus Energy 240:122–469. https://doi.org/10.1016/j.energy.2021.122469

    Article  CAS  Google Scholar 

  24. Evcan E, Tari C (2015) Production of bioethanol from apple pomace using cocultures: conversion of agro-industrial waste to value-added products. Energy 88:775–782. https://doi.org/10.1016/j.energy.2015.05.090

    Article  CAS  Google Scholar 

  25. Dhande DY, Nighot DV, Sinaga N, Dahe KB (2021) Extraction of bioethanol from waste pomegranate fruits as a potential feedstock and its blending effects on the performance of a single-cylinder SI engine. Renew Sustainable Energy Reviews 149:111–349. https://doi.org/10.1016/j.rser.2021.111349

    Article  CAS  Google Scholar 

  26. Sarkar D, Gupta K, Poddar K, Biswas R, Sarkar A (2019) The direct conversion of fruit waste to ethanol using the marine bacterial strain Citrobacter sp. E4. Process Saf Environ Prot 128:203–210. https://doi.org/10.1016/j.psep.2019.05.051

    Article  CAS  Google Scholar 

  27. Rempel A, Sossella FS, Margarites AC, Astolfi AL, Steinmetz RLR, Kunzc A, Treichel H, Colla LM (2019) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy-efficient approach. Bioresour Technol 288:121588. https://doi.org/10.1016/j.biortech.2019.121588

    Article  CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin-phenol reagent. J Biológical Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  CAS  Google Scholar 

  29. Miller GL (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  30. Salik FLM, Povh NP (1993) Electrophotometric method for developing alcohol contents in hydroalcoholic mixtures. In: Annals of the National Congress of the Society of Sugar and Alcohol Technicians of Brazil 262–266

  31. Mellinas C, Ramos M, Jiménez A, Garrigós MC (2020) Recent trends in the use of pectin from agro-waste residues as a natural biopolymer for food packaging applications. Materials 13:673. https://doi.org/10.3390/ma13030673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mugampoza D, Gafuma S, Kyosaba P, Namakajjo R (2020) Characterization of Pectin from Pulp and Peel of Ugandan Cooking Bananas at Different Stages of Ripening. J Food Res 9:67–77. https://doi.org/10.5539/jfr.v9n5p67

    Article  CAS  Google Scholar 

  33. Árias D, Rodríguez J, Loppez B, Mendez P (2021) Evaluation of the physicochemical properties of pectin extracted from Musa paradisiaca banana peel under different pH conditions in the formation of nanoparticles. Heliyon 7:06–059. https://doi.org/10.1016/j.heliyon.2021.e06059

    Article  CAS  Google Scholar 

  34. Phillips KM, McGinty RC, Couture G, Pehrsson PR, McKillop K, Fukagawa NK (2021) Dietary fiber, starch, and sugars in bananas at different stages of ripeness in the retail Market. PubMed Central 16: 0253366. https://doi.org/10.1371/journal.pone.0253366

  35. Noreen A, Nazli ZH, Akram J, Rasul I, Mansha A, Yaqoob N, Iqbal R, Tabasum S, Zuber M, Zia KM (2017) Pectin-functionalized biomaterials: A new viable approach for biomedical applications: A review. Int J Biol Macromol 101:254–272. https://doi.org/10.1016/j.ijbiomac.2017.03.029

    Article  CAS  PubMed  Google Scholar 

  36. Canteri MHG, Moreno L, Wosiacki G, Scheer AP (2012) Pectin: from raw material to final product. Polímeros 22:149–157. https://doi.org/10.1590/S0104-14282012005000024

    Article  CAS  Google Scholar 

  37. Sharma HP, Sugandha HP (2017) Enzymatic extraction and clarification of fruit juices: a review. Crit Rev Food Sci Nutr 57:1215–1227. https://doi.org/10.1080/10408398.2014.977434

    Article  CAS  PubMed  Google Scholar 

  38. Molinuevo-Salces B, Riaño B, Hijosa-Valsero M, González-García I, Paniagua-García AI, Hernández D, Garita-Cambronero J, Díez-Antolínez R, García-Gonzáleza MC (2020) Valorization of apple pomace for biofuel production: A biorefinery approach. Biomass Bioenergy 142:105785. https://doi.org/10.1016/j.biombioe.2020.105785

    Article  CAS  Google Scholar 

  39. Brasil IM, Gomes C, Puerta-Gomez A, Castell-Perez ME, Moreira RG (2012) Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT - Food Science and Technology 47:39–45. https://doi.org/10.1016/j.lwt.2012.01.005

    Article  CAS  Google Scholar 

  40. Da Silva JM, Pereira NF, De Campos DVB, Izolani AO, Carraro VM, Cardoso CE, Pereira CSS (2018) Study of the Fermentation Process of Different Fruit Biomasses. Teccen 11:58–64. https://doi.org/10.21727/teccen.v11i2.1331

    Article  Google Scholar 

  41. Maneerat N, Tangsuphoom N, Nitithamyong A (2017) Effect of extraction conditions on the properties of pectin from banana peels and its function as a fat substitute in salad cream. J Food Sci Technol 54:386–397. https://doi.org/10.1007/s13197-016-2475-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Camesasca L, Ramírez MB, Guigou M, Ferrari MD, Lareo C (2015) Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis, and fermentation of napiergrass for ethanol production. Biomass Bioenergy 74:193–201. https://doi.org/10.1016/j.biombioe.2015.01.017

    Article  CAS  Google Scholar 

  43. Carrillo-Nieves D, Ruiz HA, Aguilar CN, Ilyina A, Parra-Saldivar R, Torres JA, Hernández JLM (2017) Process alternatives for bioethanol production from mango stem bark residues. Bioresour Technol 239:430–436. https://doi.org/10.1016/j.biortech.2017.04.131

    Article  CAS  PubMed  Google Scholar 

  44. Ramos-Aguilar AL, Victoria-Campos CI, Ochoa-Reyes E, Ornelas-Paz JJ, Zamudio-Flores PB, Rios-Velasco C, Reyes-Hernandez J, Perez-Martínez JD, Ibarra-Junquera V (2017) Physicochemical properties of apple juice during sequential steps of industrial processing and functional properties of pectin fractions from the generated pomace. LWT Food Sci Technol 86:465–472. https://doi.org/10.1016/j.lwt.2017.08.030

    Article  CAS  Google Scholar 

  45. Emaga TH, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M (2007) Effects of maturation stage and variety on the chemical composition of banana and plantain peels. Food Chem 103:590–600. https://doi.org/10.1016/j.foodchem.2006.09.006

    Article  CAS  Google Scholar 

  46. Arora A, Banerjee J, Ranganathan V (2018) Process design and techno-economic analysis of an integrated mango-processing waste biorefinery. Ind Crops Prod 116:24–34. https://doi.org/10.1016/j.indcrop.2018.02.061

    Article  CAS  Google Scholar 

  47. Cypriano DZ, Silva LL, Tasic L (2018) High-value-added products from orange juice industrial waste. Waste Manag 79:71–78. https://doi.org/10.1016/j.wasman.2018.07.028

    Article  CAS  PubMed  Google Scholar 

  48. Guerrero AB, Ballesteros I, Ballesteros M (2018) The potential of agricultural banana waste for bioethanol production. Fuel 174:114170. https://doi.org/10.1016/j.fuel.2017.10.105

    Article  CAS  Google Scholar 

  49. Santos SF, Cardoso RCV, Borges IMP, Almeida AC, Andrade ES, Ferreira IO, Ramos LC (2020) Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: analysis of determinants, volumes, and reduction strategies. Waste Manag 101:161–170. https://doi.org/10.1016/j.wasman.2019.10.007

    Article  PubMed  Google Scholar 

  50. Uchôa PZ, Porto RCT, Battisti R, Marangoni C, Sellin N, Souza O (2021) Ethanol from residual biomass of banana harvest and commercialization: A three-waste simultaneous fermentation approach and a logistic-economic assessment of the process scaling-up towards a sustainable biorefnery in Brazil. Industrial Crops & Products 174:114170. https://doi.org/10.1016/j.indcrop.2021.114170

    Article  CAS  Google Scholar 

  51. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by simultaneous saccharification and fermentation (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. https://doi.org/10.1016/j.procbio.2003.09.011

    Article  CAS  Google Scholar 

  52. Saifuddin M, Khandaker MM, Hossain ABMS, Jahan S, Mat NB, Boyce AN (2014) Bioethanol Production from Mango Waste (Mangifera indica L. cv chokanan): Biomass as Renewable Energy. Aust J Basic Appl Sci 8:229–237. https://doi.org/10.1111/1541-4337.12330

    Article  CAS  Google Scholar 

  53. Aleman-Ramirez JL, Pérez-Sariñana BY, Torres-Arellano S, Saldaña-Trinidad S, Longoria A, Sebastian PJ (2020) Bioethanol production from Ataulfo mango supplemented with vermicompost leachate. Catal Today 353:173–179. https://doi.org/10.1016/j.cattod.2019.07.028

    Article  CAS  Google Scholar 

  54. Diano N, Grimaldi T, Bianco M, Rossi S, Gabrovska K, Yordanova G, Godjevargova T, Grano V, Nicolucci C, Mita L, Bencivenga U, Canciglia P, Mita DG (2008) Apple juice clarification using immobilized pectolytic enzymes in packed or fluidized bed reactors. J Agric Food Chem 56:11477. https://doi.org/10.1021/jf8019437

    Article  CAS  Google Scholar 

  55. Oberoi HS, Sandhu SK, Vadlani PV (2012) Statistical optimization of hydrolysis process for banana peels using cellulolytic and pectinolytic enzymes. Food Bioprod Process 90:257–265. https://doi.org/10.1016/j.fbp.2011.05.002

    Article  CAS  Google Scholar 

  56. Oliveira TIS, Morsyleide FR, Cavalcante FL, Pereira PHF, Moates GK, Wellner N, Mazzetto SE, Waldron KW, Azevedo HMC (2016) Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chem 198:113–118. https://doi.org/10.1016/j.foodchem.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  57. Cheng Y-S, Mutrakulcharoen P, Chuetor S, Cheenkachorn K, Tantayotai P, Panakkal EJ, Sriariyanun M (2020) Recent Situation and Progress in Biorefining Process of Lignocellulosic Biomass: Toward Green Economy. Appl Sci Eng Progress 13:299–311. https://doi.org/10.14416/j.asep.2020.08.002

    Article  Google Scholar 

  58. Sriariyanun M, Heitz JH, Yasurin P, Asavasanti S, Tantayotai P (2019) Itaconic Acid: A Promising and Sustainable Platform Chemical? Appl Sci Eng Progress 12:75–82. https://doi.org/10.14416/j.asep.2019.05.002

    Article  Google Scholar 

  59. Rachamontree P, Douzou T, Cheenkachorn K, Sriariyanun M, Rattanaporn K (2020) Furfural: A Sustainable Platform Chemical and Fuel. Appl Sci Eng Progress 13:3–10. https://doi.org/10.14416/j.asep.2020.01.003

    Article  Google Scholar 

  60. Panakkal EJ, Kitiborwornkul N, Sriariyanun M, Ratanapoompinyo J, Yasurin P, Asavasanti S (2021) Production of Food Flavouring Agents by Enzymatic Reaction and Microbial Fermentation. Appl Sci Eng Progress 14:297–312. https://doi.org/10.14416/j.asep.2021.04.006

    Article  Google Scholar 

  61. Luo J, Ma Y, Xu Y (2020) Valorization of apple pomace using a two-step slightly acidic processing strategy. Renawable Energy 152:793–798. https://doi.org/10.1016/j.renene.2020.01.120

    Article  CAS  Google Scholar 

  62. Bello F, Chimphango A (2021) Optimization of lignin extraction from alkaline treated mango seed husk by high shear homogenization-assisted organosolv process using response surface methodology. Int J Biol Macromol 167:1379–1392. https://doi.org/10.1016/j.ijbiomac.2020.11.092

    Article  CAS  PubMed  Google Scholar 

  63. Karim R, Nahar K, Zohora FT, Islam MM, Bhuiyan RH, Jahan MS, Shaikh MM (2022) Pectin from lemon and mango peel: Extraction, characterisation and application in biodegradable film. Carbohydr Polym Technol Appl 4:100258. https://doi.org/10.1016/j.carpta.2022.100258

    Article  CAS  Google Scholar 

  64. Pornkamol U, Friedrich S (2010) Continuous production of ethanol from hexoses and pentoses using immobilized mixed cultures of Escherichia coli strains. J Biotechnol 150:215–223. https://doi.org/10.1016/j.jbiotec.2010.08.002

    Article  CAS  Google Scholar 

  65. Soares LB, Bonan CIDG, Biazi LE, Dionísio SR, Bonatelli ML, Andrade ALD, Renzano EC, Costa AC, Ienczak JL (2020) Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass Bioenergy 137:105549. https://doi.org/10.1016/j.biombioe.2020.105549

    Article  CAS  Google Scholar 

  66. Kai L, Jin-Cheng Q, Chen-Guang L, Feng-Wu B (2016) Optimization of pretreatment, enzymatic hydrolysis and fermentation for more efficient ethanol production by Jerusalem artichoke stalk. Bioresour Technol 221:188–194. https://doi.org/10.1016/j.biortech.2016.09.021

    Article  CAS  Google Scholar 

  67. Soni SK, Sharma A, Soni R 2023 Microbial Enzyme Systems in the Production of Second Generation Bioethanol.Sustainability15:3590https://doi.org/10.3390/su15043590

Download references

Acknowledgement

The author Danúbia Paula Cadore Favavretto would like to thank the University of Passo Fundo (UPF) for the scholarship.

Funding

This study was financed in part by the University of Passo Fundo.

Author information

Authors and Affiliations

Authors

Contributions

Danúbia Paula Cadore Favaretto: Conceptualization, Methodology, Formal analysys and investigation, Writing. Alan Rempel: Methodology, Writing.Julia Roberta Lanzini: Methodology.Ana Carolina Mattana Silva: Methodology.Tauane Lazzari: Methodology.Luiza Desengrini Barbizan: Methodology.Vandré Barbosa Brião: Conceptualization, Writing, Reviewing and Editing, Supervision.Luciane Maria Colla: Conceptualization, Methodology.Helen Treichel: Conceptualization, Methodology.

Corresponding author

Correspondence to Danúbia Paula Cadore Favaretto.

Ethics declarations

Ethical approval

This declaration is not applicable.

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Favaretto, D.C., Rempel, A., Lanzini, J.R. et al. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World J Microbiol Biotechnol 39, 144 (2023). https://doi.org/10.1007/s11274-023-03588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03588-2

Keywords

Navigation