Skip to main content
Log in

Endophytic microbiota of floating aquatic plants: recent developments and environmental prospects

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plant-associated microorganisms play a critical role in plant survival and functional attributes. There are many studies on the taxonomical and functional aspects of microorganisms associated with terrestrial plants. However, the microbiome of aquatic plants is not much explored. This work details the studies on microbiomes and diversity in microbial communities inhabiting the three common free-floating aquatic plants of tropical regions viz. duckweed, water hyacinth and water lettuce, widely implicated for their bioremediation potential. Studies conducted till date reveal the prevalence and dominance of different Bacillus sp. Other genera, including Rhodanobacter, Pseudomonas, Rhizobium, Achromobacter, Serratia, Actinobacteria, Proteobacter, Klebsiella and Acidobacteria, have also been prominently reported. This lesser explored niche offers great bioprospecting opportunities to obtain taxonomically diverse and functionally distinct microorganisms. Bacterial endophytes from these aquatic plants have been primarily studied for their ability to produce indole acetic acid and degrade phenol. Limited studies reveal some fungal endophytes to have promising herbicidal effect. Not much is known on other functional attributes and hence microbial studies on these plants holds much promise for obtaining novel isolates or isolates with novel functions that would impact both aquatic and terrestrial ecosystems. This study proposes the need for exploring the role of endophytes as biocontrol agents and their potential to provide a pragmatic and robust solution to the aquatic weed menace in freshwater bodies. Bioprospecting of this lesser studied ecological niche hence is a promising field of research that has both environmental and economic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

This is a review article and no data sets were generated.

References

  • Anudechakul C, Vangnai AS, Ariyakanon N (2015) Removal of chlorpyrifos by water hyacinth (Eichhornia crassipes) and the role of a plant-associated bacterium. Internat J Phytorem 17(7):678–685

    Article  CAS  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol lett 3:267–274

    Article  Google Scholar 

  • Acosta K, Xu J, Gilbert S, Denison E, Brinkman T, Lebeis S, Lam E (2020) Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS ONE 15:e0228560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MA, Lam E (2021) Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 33:3207–3234

    Article  PubMed  PubMed Central  Google Scholar 

  • Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49

    Article  CAS  PubMed  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  Google Scholar 

  • Alibrandi P, Lo Monaco N, Calevo J, Voyron S, Puglia AM, Cardinale M, Perotto S (2021) Plant growth promoting potential of bacterial endophytes from three terrestrial mediterranean orchid species. Plant Biosyst 155:1153–1164

    Article  Google Scholar 

  • Almeida TT, Orlandelli RC, Azevedo JL, Pamphile JA (2015) Molecular characterization of the endophytic fungal community associated with Eichhornia azurea (Kunth) and Eichhornia crassipes (Mart.)(Pontederiaceae) native to the Upper Paraná River floodplain, Brazil. Gen Mol Res 14(2):4920–4931

    Article  CAS  Google Scholar 

  • Ancheeva E, Daletos G, Proksch P (2020) Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 27:1836–1854

    Article  CAS  PubMed  Google Scholar 

  • Appenroth KJ, Sree KS, Fakhoorian T, Lam E (2015) Resurgence of duckweed research and applications: Report from the 3rd International Duckweed Conference

  • Appenroth KJ, Ziegler P, Sree KS (2016) Duckweed as a model organism for investigating plant-microbe interactions in an aquatic environment and its applications. Endocytobiosis Cell Res 27:106

    Google Scholar 

  • Appenroth KJ, Ziegler P, Sree KS (2021) Accumulation of starch in duckweeds (Lemnaceae), potential energy plants.Physiol Mol Biol Plants:1–13

  • Ashraf S, Afzal M, Naveed M, Shahid M, Ahmad Zahir Z (2018) Endophytic bacteria enhance remediation of tannery effluent in constructed wetlands vegetated with Leptochloa fusca. Int J Phytorem 20:121–128

    Article  CAS  Google Scholar 

  • Astrom B (1991) Role of bacterial cyanide production in differential reaction of plant cultivars to deleterious rhizosphere pseudomonads. Plant Soil 133:93–100

    Article  Google Scholar 

  • Astudillo-Garcia C, Bell JJ, Webster NS, Glasl B, Jompa J, Montoya JM, Taylor MW (2017) Evaluating the core microbiota in complex communities: a systematic investigation. Enviro Microbiol 19:1450–1462

    Article  Google Scholar 

  • Avila MP, Oliveira-Junior ES, Reis MP, Hester ER, Diamantino C, Veraart AJ, lamers LPM, Kosten S, Nascimento A (2019) The water hyacinth microbiome: link between carbon turnover and nutrient cycling. Microb Ecol 78(3):575–588

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Saeed M, Choi HK (2021) Duckweeds: their utilization, metabolites and cultivation. Appl Biol Chem 64:1–15

    Article  Google Scholar 

  • Baldwin DS (2013) Organic phosphorus in the aquatic environment. Environ Chem 10:439–454

    Article  CAS  Google Scholar 

  • Bog M, Sree KS, Fuchs J, Hoang PT, Schubert I, Kuever J, Appenroth KJ (2020) A taxonomic revision of Lemna sect. Uninerves (Lemnaceae) Taxon 69:56–66

    Article  Google Scholar 

  • Castro RA, Dourado MN, Almeida JRD, Lacava PT, Nave A, Melo ISD, Quecine MC (2018) Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth. Braz J Microbiol 49:59–66

    Article  CAS  PubMed  Google Scholar 

  • Chen WM, Tang YQ, Mori K, Wu XL (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15(2):99–110

    Article  Google Scholar 

  • Cheng L, Zhu HX, Wei YH, Guo LZ, Weng H, Guo QY (2021) Biological control of Qinghai plateau terrestrial weeds with the A. alternata HL-1. J Plant Dis Prot 128:1691–1704

    Article  CAS  Google Scholar 

  • Das P, Debnath G, Saha AK (2013) Endophytic fungal assemblages in an aquatic weed: Eichhornia crassipes. (Mart) Solms Ind J Fund Appl Life Scie 3(3):76–80

    Google Scholar 

  • Datta A, Maharaj S, Prabhu GN, Bhowmik D, Marino A, Akbari V, Rupavatharam S, Sujeetha JA, Anantrao GG, Poduvattil V, Kumar S, Kleczkowski A (2021) Monitoring the spread of water hyacinth (Pontederia crassipes): challenges and future developments. Front Ecol Evol 9:631338

    Article  Google Scholar 

  • Demmig-Adams B, Polutchko SK, Zenir MC, Fourounjian P, Stewart JJ, López-Pozo M, Adams WW III (2022) Intersections: photosynthesis, abiotic stress, and the plant microbiome. Photosynthetica 60(1):59–69

    Article  CAS  Google Scholar 

  • Ebada SS, Ebrahim W (2020) A new antibacterial quinolone derivative from the endophytic fungus aspergillus versicolor strain Eich. 5.2. 2. South Afr J Bot 134:151–155

    Article  CAS  Google Scholar 

  • Eid AM, Fouda A, Abdel-Rahman MA, Salem SS, Elsaied A, Oelmüller R, Hassan SED (2021) Harnessing bacterial endophytes for promotion of plant growth and biotechnological applications: an overview. Plants 10:935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekanayake MS, Udayanga D, Wijesekara I, manage P (2021) Phytoremediation of synthetic textile dyes: biosorption and enzymatic degradation involved in efficient dye decolorization by Eichhornia crassipes (Mart.) Solms and Pistia stratiotes L. Environ Sci Pollut Res 28:20476–20486

    Article  CAS  Google Scholar 

  • Ekperusi AO, Sikoki FD, Nwachukwu EO (2019) Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: state and future perspective. Chemosphere 223:285–309

    Article  CAS  PubMed  Google Scholar 

  • Ekperusi AO, Nwachukwu EO, Sikoki FD (2020) Assessing and modelling the efficacy of Lemna paucicostata for the phytoremediation of petroleum hydrocarbons in crude oil-contaminated wetlands. Sci Rep 10:1–9

    Article  Google Scholar 

  • El-Morsy EM (2004) Evaluation of microfungi for the biological control of water hyacinth in Egypt. Fungal Divers 16:35–51

    Google Scholar 

  • Fanani AZ, Triastuti J, Sulmartiwi L (2021) Identification and antimicrobial activity test of endophytic fungi from water hyacinth petiole (Eichhornia crassipes) against Escherichia coli and Staphylococcus aureus. IOP Conf. Ser. Earth Environ Sci 718:012012

  • Galgali P, Palimkar S, Adhikari A, Patel R, Routh J (2022) Remediation of potentially toxic elements-containing wastewaters using water hyacinth–a review.Int J phytorem1–15

  • Garcia-Aroca T, Doyle V, Singh R, Price T, Collins K (2018) First report of Curvularia leaf spot of corn, caused by Curvularia lunata, in the United States. Plant Health Prog 19:140–142

    Article  Google Scholar 

  • Gilbert S, Xu J, Acosta K, Poulev A, Lebeis S, Lam E (2018) Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front Chem 6:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Stearns JC (2011) Making phytoremediation work better: maximizing a plant’s growth potential in the midst of adversity. Int J phytorem 13:4–16

    Article  Google Scholar 

  • Govindan V, Gunasekaran A (2020) Endophytes fungi associated with a Water Hyacinth of Eichhornia Crassipes (Mart.) Solms. Int J Sci Res in Biol Sci 7(3):62–66

    Google Scholar 

  • Hamdan HZ, Houri AF (2022) CO2 sequestration by propagation of the fast-growing Azolla spp. Environ Sci Pollut Res 29:16912–16924

    Article  CAS  Google Scholar 

  • Hawkes CV, Bull JJ, Lau JA (2020) Symbiosis and stress: how plant microbiomes affect host evolution. Philos Trans R Soc B 375:20190590

    Article  CAS  Google Scholar 

  • Ishizawa H, Kuroda M, Morikawa M, Ike M (2017a) Evaluation of environmental bacterial communities as a factor affecting the growth of duckweed Lemna minor. Biotechnol Biofuels 10:1–10

    Article  Google Scholar 

  • Ishizawa H, Kuroda M, Morikawa M, Ike M (2017b) Differential oxidative and antioxidative response of duckweed Lemna minor toward plant growth promoting/inhibiting bacteria. Plant Physiol Biochem 118:667–673

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa H, Kuroda M, Inoue K, Inoue D, Morikawa M, Ike M (2019) Colonization and competition dynamics of plant growth-promoting/inhibiting bacteria in the phytosphere of the duckweed Lemna minor. Microb Ecol 77:440–450

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa H, Ogata Y, Hachiya Y, Tokura KI, Kuroda M, Inoue D, Ike M (2020a) Enhanced biomass production and nutrient removal capacity of duckweed via two-step cultivation process with a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23. Chemosphere 238:124682

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa H, Kuroda M, Inoue D, Morikawa M, Ike M (2020b) Community dynamics of duckweed-associated bacteria upon inoculation of plant growth-promoting bacteria. FEMS Microbiol Ecol 96:fiaa101

    Article  CAS  PubMed  Google Scholar 

  • Ishizawa H, Kuroda M, Inoue D, Ike M (2022) Genome-wide identification of bacterial colonization and fitness determinants on the floating macrophyte, duckweed. Commun Biol 5:1–10

    Article  Google Scholar 

  • Iwashita T, Tanaka Y, Tamaki H, Yoneda Y, Makino A, Tateno Y, Mori K (2020) Comparative analysis of microbial communities in fronds and roots of three duckweed species: Spirodela polyrhiza, Lemna minor, and Lemna aequinoctialis. Microbes Environ 35:ME20081

    Article  PubMed  PubMed Central  Google Scholar 

  • Khairina Y, Jog R, Boonmak C, Toyama T, Oyama T, Morikawa M (2021) Indigenous bacteria, an excellent reservoir of functional plant growth promoters for enhancing duckweed biomass yield on site. Chemosphere 268:129247

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Thawai C (2014) Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis. Int J Syst Evol Microbiol 64:2455–2460

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Chitti T (2015) Paenibacillus lemnae sp. nov., an endophytic bacterium of duckweed (Lemna aequinoctialis). Int J Syst Evol Microbiol 65:107–112

    Article  CAS  PubMed  Google Scholar 

  • Kittiwongwattana C, Vuttipongchaikij S (2015) Biodiversity of endophytic bacteria isolated from duckweed (Landoltia punctata) and their IAA production.Sci Technol Asia:1–11

  • Kristanti RA, Kanbe M, Hadibarata T, Toyama T, Tanaka Y, Mori K (2012) Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environ Sci Pollut Res 19:1852–1858

    Article  CAS  Google Scholar 

  • Kumar SS, Sreekumar R, Sabu A (2019) Tannase and its applications in food processing.Green Bio-processes357–381

  • Li X, Wufuer M (2010) Identification of an antibacterial endophyte actinomycete isolated from Pistia stratiotes L. Xinjiang Agricul Sci 47(7):1370–1375

    CAS  Google Scholar 

  • Matsuzawa H, Tanaka Y, Tamaki H, Kamagata Y, Mori K (2010) Culture-dependent and independent analyses of the microbial communities inhabiting the giant duckweed (Spirodela polyrrhiza) rhizoplane and isolation of a variety of rarely cultivated organisms within the phylum Verrucomicrobia.Microbes Environ1009130227–1009130227

  • Mohan Babu R, Sajeena A, Seetharaman K, Vidhyasekaran P, Rangasamy P, Raja AS, Biji KR (2002) Host range of Alternaria alternata—a potential fungal biocontrol agents for waterhyacinth in India. Crop Prot 21:0–1085

    Google Scholar 

  • Mustafa HM, Hayder G (2021) Evaluation of water lettuce, giant salvinia and water hyacinth systems in phytoremediation of domestic wastewater. H2Open J 4:167–181

    Article  Google Scholar 

  • O’Brien AM, Laurich J, Lash E, Frederickson ME (2020a) Mutualistic outcomes across plant populations, microbes, and environments in the duckweed Lemna minor. Microb Ecol 80:384–397

    Article  PubMed  Google Scholar 

  • O’Brien AM, Yu ZH, Luo DY, Laurich J, Passeport E, Frederickson E (2020b) Resilience to multiple stressors in an aquatic plant and its microbiome. Am J Bot 107:273–285

    Article  PubMed  Google Scholar 

  • Oktalira FT, May TW, Dearnaley JD, Linde CC (2021) Seven new Serendipita species associated with australian terrestrial orchids. Mycologia 113:968–987

    PubMed  Google Scholar 

  • Ortega-Acosta O, Rodriguez-Tovar AV, López-López E, Rodríguez-Tovar A (2015) Characterization of indole acetic acid endophyte producers in authoctonus Lemna gibba plants from Xochimilco Lake. Afr J Biotechnol 14:604–611

    Article  Google Scholar 

  • Pandey PK, Singh MC, Singh S, Kumar AK, Pathak MM, Shakywar RC, Pandey AK (2017) Inside the plants: endophytic bacteria and their functional attributes for plant growth promotion. Int J Curr Microbiol Appl Sci 6:11–21

    Article  CAS  Google Scholar 

  • Pang YL, Quek YY, Lim S, Shuit SH (2023) Review on phytoremediation potential of floating aquatic plants for heavy Metals: a Promising Approach. Sustainability 15(2):1290

    Article  CAS  Google Scholar 

  • Pant S, Mishra D, Gupta S, Chaturvedi P (2021) Fungal endophytes as a potential source of therapeutically important metabolites. In: Sharma JK, Shah MP, Parmar S, Kumar A Fungi Bio-Prospects Sust Agricul Environ Nano-Technol, Vol 3, Academic Press, pp 275–314

  • Patel JK, Archana G (2017) Diverse culturable diazotrophic endophytic bacteria from Poaceae plants show cross-colonization and plant growth promotion in wheat. Plant Soil 417:99–116

    Article  CAS  Google Scholar 

  • Pathak A, Kannan C (2011) Isolation and pathogenicity of some native fungal pathogens for the biological management of water hyacinth. Indian J Weed Sci 44:178–180

    Google Scholar 

  • Poveda J, Eugui D, Abril-Urías P, Velasco P (2021) Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 85:1–19

    Article  CAS  Google Scholar 

  • Quisehuatl-Tepexicuapan E, Ferrera-Cerrato R, Silva-Rojas V, Rodriguez-Zaragoza H, Alarcón S, Almaraz-Suárez A JJ (2016) Free-living culturable bacteria and protozoa from the rhizoplanes of three floating aquatic plant species. Plant Biosys 150:855–865

    Article  Google Scholar 

  • Priyadarshini MS, Panigrahi S, Rath CC (2022) Endophytes: novel microorganisms for plant growth promotion, vol 1. Darshan publishers, India

    Google Scholar 

  • Radulovic O, Stanković S, Uzelac B, Tadić V, Trifunović-Momčilov M, Lozo J, Marković M (2020) Phenol removal capacity of the common duckweed (Lemna minor) and six phenol-resistant bacterial strains from its rhizosphere: in vitro evaluation at high phenol concentrations. Plants 9:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal K, Sasiprabha P, Sabarish S, Arulmathi R, Meenashree B, Kathiravan G, Kathireshan AK (2020) Enumeration of endophytic fungi from Eichhornia crassipes root and preliminary screening for tannase enzyme production. Asian J Microbiol Biotechnol Environ Sci 22:329–333

    Google Scholar 

  • Rale V, Singh P, Shetty K (2019) Lemnaceae: Source Food Supplements to Functional Foods. In Shetty K, Sarkar D (Eds) Funct Foods Biotechnol, CRC press, USA pp133-141

  • Rangjaroen C, Rerkasem B, Teaumroong N, Noisangiam R, Lumyong S (2015) Promoting plant growth in a commercial rice cultivar by endophytic diazotrophic bacteria isolated from rice landraces. Ann Microbiol 65:253–266

    Article  CAS  Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  CAS  PubMed  Google Scholar 

  • Saimee Y, Duangmal K (2021) Streptomyces spirodelae sp. nov., isolated from duckweed. Int J Syst Evol Microbiol 71:005106

    Article  CAS  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Dey A, Kumar V, Batiha GES, El-Esawi MA, Tomczyk M, Ray P (2021) Fungal endophyte: an interactive endosymbiont with the capability of modulating host physiology in myriad ways.Front Plant Sci12

  • Shehzadi M, Fatima K, Imran A, Mirza MS, Khan QM, Afzal M (2016) Ecology of bacterial endophytes associated with wetland plants growing in textile effluent for pollutant-degradation and plant growth-promotion potentials. Plant Biosyst 150:1261–1270

    Article  Google Scholar 

  • da Silva SGM, de Melo BA, dos Santos MT, Rios RRS, Santos CMDSA, Júnior KALR, Fraga AB (2022) Endophytic fungi: benefits for plants and biotechnological potential. Res Soc Dev 11:e9211427008–e9211427008

    Article  Google Scholar 

  • Singh B, Saxena S, Meshram V, Kumar M (2016) Mycoherbicidal potential of Phaeoacremonium italicum, a New Pathogen of Eichhornia crassipes infesting Harike Wetland, India. Mycobiol 44:85–93

    Article  Google Scholar 

  • Singh P, Sharma S, Dhanorkar M (2022) Aquatic plant biomass derived porous carbon: biomaterials for sustainable waste management and climate change mitigation. Int J Environmental Sci Technol. https://doi.org/10.1007/s13762-022-04601-1

    Article  Google Scholar 

  • Soumya PR, Rukshana Begum S, Tamil Selvi KS (2018) Endophytic fungi as latent pathogens in Eichhornia crassipes (Mart.) Solms. Int J Adv Sci Res Manag 3:140–146

    Google Scholar 

  • Srivastava JK, Chandra H, Kalra SJ, Mishra P, Khan H, Yadav P (2017) Plant–microbe interaction in aquatic system and their role in the management of water quality: a review. Appl Water Sci 7:1079–1090

    Article  CAS  Google Scholar 

  • Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4:57

    Article  Google Scholar 

  • Sun L, Zhao H, Liu J, Li B, Chang Y, Yao D (2021) A new green model for the bioremediation and resource utilization of livestock wastewater. Int J Environ Res Public Heal 18:8634

    Article  CAS  Google Scholar 

  • Suryanarayanan TS, Shaanker RU (2021) Can fungal endophytes fast-track plant adaptations to climate change? Fungal Ecol 50:101039

    Article  Google Scholar 

  • Tabinda AB, Irfan R, Yasar A, Iqbal A, Mahmood A (2018) Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper. Environ Technol 41(12):1514–1519

    Article  PubMed  Google Scholar 

  • Tanaka Y, Tamaki H, Matsuzawa H, Nigaya M, Mori K, Kamagata Y (2012) Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10.Microbes Environ1111290336–1111290336

  • Tanaka Y, Tamaki H, Tanaka K, Tozawa E, Matsuzawa H, Toyama T, Mori K (2018) “Duckweed-microbe co-cultivation method” for isolating a wide variety of microbes including taxonomically novel microbes. Microbes Environ 33:402–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang J, Zhang Y, Cui Y, Ma J (2015) Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor. Environ Sci Pollu Res 22:9686–9693

    Article  CAS  Google Scholar 

  • Tarquinio F, Attlan O, Vanderklift MA, Berry O, Bissett A (2021) Distinct endophytic bacterial communities inhabiting seagrass seeds. Front Microbiol 12:703014

    Article  PubMed  PubMed Central  Google Scholar 

  • Tidke SA, Kiran S, Giridhar P, Gokare RA (2018) Current understanding and future perspectives of endophytic microbes vis-a-vis production of secondary metabolites. In: Jha S (ed) Endophytes and secondary metabolites. Springer International Publishing, Switzerland, pp 1–16

    Google Scholar 

  • Torta L, Burruano S, Giambra S, Conigliaro G, Piazza G, Mirabile G, Pirrotta M, Calvo R, Bellissimo G, Calvo S, Tomasello A (2022) Cultivable fungal endophytes in roots, rhizomes and leaves of Posidonia oceanica (L.) Delile along the coast of Sicily, Italy. Plants 11:1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyama T, Sei K, Yu N, Kumada H, Inoue D, Hoang H, Soda S, Chang YC, Kikuchi S, Fujita M, Ike M (2009) Enrichment of bacteria possessing catechol dioxygenase genes in the rhizosphere of Spirodela polyrrhiza: a mechanism of accelerated biodegradation of phenol. Water Res 43:3765–3776

    Article  CAS  PubMed  Google Scholar 

  • Toyama T, Hanaoka T, Tanaka Y, Morikaw M, Mori K (2018) Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent. Biores Technol 250:464–473

    Article  CAS  Google Scholar 

  • Wahab AA, Adeyemi FM, Dare AP, Ozabor PT, Badmus MK, Ogunlana OE, Akinde SB (2022) Assessment of total petroleum hydrocarbon degradation by endophytic fungi isolated from water hyacinth (Eichhornia crassipes). UNIOSUN J Eng Environ Sci 4(1):164–171

    Google Scholar 

  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, Mot R, Lugtenberg BJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interac 15:1173–1180

    Article  Google Scholar 

  • Weise T, Kai M, Piechulla B (2013) Bacterial ammonia causes significant plant growth inhibition. PLoS ONE 8:e63538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF (2011) Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs 9:561–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie WY, Su JQ, Zhu YG (2015) Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by Illumina high-throughput sequencing. Appl Environ Microbiol 81(2):522–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44:6470–6474

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa Y, Jog R, Morikaw M (2018) Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant Growth Regul 86:287e296

    Article  Google Scholar 

  • Yoneda Y, Yamamoto K, Makino A, Tanaka Y, Meng XY, Hashimoto J, Tamaki H (2021) Novel plant-associated Acidobacteria promotes growth of common floating aquatic plants, duckweeds. Microorganisms 9:1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Wang M, Zhao H (2014) Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production. Plant Biol 17:82–90

    Article  PubMed  Google Scholar 

  • Zheng H, Qiao M, Xu J, Yu Z (2021) Culture-based and culture-independent assessments of endophytic fungal diversity in aquatic plants in Southwest China. Front Fungal Biol 27. https://doi.org/10.3389/ffunb.2021.692549

  • Ziegler P, Sree S, Appenroth KJ (2016) Duckweeds for water remediation and toxicity testing. Toxicol Environ Chem 98:1127–1154

    Article  CAS  Google Scholar 

  • Zuki NAM, Yahya H, Ariffin N, Yahya HN (2022) The classification of duckweed and its bacterial community: a review. Malaysian J Sci Heal Technology 8(1):14–26

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank The Registrar, Symbiosis International (Deemed University) for his support.

Funding

The authors declare that no funds or grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Original first draft preparation was done by AP. SS contributed to literature search and finalization of figure and tables. Coordination for article preparation, critical reviewing and editing was done by MD. OP was invoved in critical revision and finalization of the manuscript. Visualization and conceptualization of the review article, reviewing and final editing and preparation of the manuscript was done by PS. All the authors were involved in writing, final reviewing and editing of the manuscript.

Corresponding author

Correspondence to Pooja Singh.

Ethics declarations

Competing interests

The authors have no relevant financial or non financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanic, A., Sharma, S., Dhanorkar, M. et al. Endophytic microbiota of floating aquatic plants: recent developments and environmental prospects. World J Microbiol Biotechnol 39, 96 (2023). https://doi.org/10.1007/s11274-023-03543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-023-03543-1

Keywords

Navigation