Skip to main content

Advertisement

Log in

The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rhizobia are a diazotrophic group of bacteria that are usually isolated form the nodules in roots, stem of leguminous plants and are able to form nodules in the host plant owing to the presence of symbiotic genes. The rhizobial community is highly diverse, and therefore, the taxonomy and genera-wise classification of rhizobia has been constantly changing since the last three decades. This is mainly due to technical advancements, and shifts in definitions, resulting in a changing paradigm of rhizobia taxonomy. Initially, the taxonomic definitions at the species and sub species level were based on phylogenetic analysis of 16S rRNA sequence, followed by polyphasic approach to have phenotypic, biochemical, and genetic analysis including multilocus sequence analysis. Rhizobia mainly belonging to α- and β-proteobacteria, and recently new additions from γ-proteobacteria had been classified. Nowadays rhizobial taxonomy has been replaced by genome-based taxonomy that allows gaining more insights of genomic characteristics. These omics—technologies provide genome specific information that considers nodulation and symbiotic genes, along with molecular markers as taxonomic traits. Taxonomy based on complete genome sequence (genotaxonomy), average nucleotide identity, is now being considered as primary approach, resulting in an ongoing paradigm shift in rhizobial taxonomy. Also, pairwise whole-genome comparisons, phylogenomic analyses offer correlations between DNA and DNA re-association values that have delineated biologically important species. This review elaborates the present classification and taxonomy of rhizobia, vis-a-vis development of technical advancements, parameters and controversies associated with it, and describe the updated information on evolutionary lineages of rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta JL, Eguiarte LE, Santamaria RI, Bustos P, Vinuesa P, Martinez-Romero E et al (2011) Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination. BMC Evol Biol 11:305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alien EK, Allen ON (1950) Biochemical and symbiotic properties of the rhizobia. Bacteriol Rev 14:273–330

    Article  Google Scholar 

  • Althabegoiti MJ, Ormeno-Orrillo E, Lozano L, Torres-Tejerizo G, Rogel MA, Mora J, Martınez-Romero E (2014) Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol. https://doi.org/10.1186/1471-2180-14-6

    Article  PubMed  PubMed Central  Google Scholar 

  • An DS, Im WT, Yang HC, Lee ST (2006) Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. Int J Syst Evol Microbiol 56:443–448

    Article  CAS  PubMed  Google Scholar 

  • Andrew M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18:705

    Article  CAS  Google Scholar 

  • Aoki S, Ito M, Iwasaki W (2013) From β- to α-proteobacteria: the origin and evolution of rhizobial nodulation genes nodI. Mol Biol Evol 30:2494–2508

    Article  CAS  PubMed  Google Scholar 

  • Aserse AA, Rasanen LA, Aseffa F, Hailemariam A, Lindstrom K (2012) Phylogenetically diverse groups of Bradyrhizobium isolated from nodules of Crotalaria spp., Indigofera spp., Erythrina brucei and Glycine max growing in Ethiopia. Mol Phylogenet Evol 65:595–609

    Article  PubMed  Google Scholar 

  • Azevedo LB, Van-Zelm R, Leuven R et al (2015) Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environ Pollut 200:85–92

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IL, Fred EB (1929) Nomenclature of the root nodule bacteria of the Leguminosae. J Bacteriol 17:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beijerinck MW (1888) Cultur des Bacillus radicicola aus den Knollchen. Bot Ztg 46:740–750 (not read in original)

    Google Scholar 

  • Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the Rhizobia: current perspectives. Br Microbiol Res J 4:616–639

    Article  Google Scholar 

  • Boakye EY, Lawson IYD, Danso SKA, Offei SK (2016) Characterization and diversity of rhizobia nodulating selected tree legumes in Ghana. Symbiosis 69:89–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontemps C, Elliott GN, Simon MF, dos Reis Jr FB, Gross E, Lawton RC, Neto NE, Loureiro MF, de Faria SM, Sprent JI et al (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52

    Article  CAS  Google Scholar 

  • Bontemps C, Rogel MA, Wiechmann A, Mussabekova A, Moody S, Simon MF, Moulin L, Elliott GN, Lacercat-Didier L, Dasilva C et al (2016) Endemic Mimosa species from Mexico prefer α-proteobacterial rhizobial symbionts. New Phytol 209:319–333

    Article  CAS  PubMed  Google Scholar 

  • Bournaud C, de Faria SM, dos Santos JM, Tisseyre P, Silva M, Chaintreuil C et al (2013) Burkholderia species are the most common and preferred nodulating symbionts of the Piptadenia group (tribe Mimoseae). PLoS ONE 8:e63478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso JD, Hungria M, Andrade DS (2012) Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N(2) with common bean (Phaseolus vulgaris L.). Appl Microbiol Biotechnol 39:1851–1864

    Google Scholar 

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38(4):392–397

    Article  Google Scholar 

  • Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Chen WF, Wang ET, Ji ZJ, Zhang JJ (2021) Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application. J Appl Microbiol 131(2):553–563

    Article  CAS  PubMed  Google Scholar 

  • Cordeiro AB, Ribeiro RA, Helene LCF, Hungría M (2017) Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 67:3937–3945

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Liu X, Wang Y (2012) Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China. Genet Mol Res 11:2683–2693

    Article  CAS  PubMed  Google Scholar 

  • de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, et al. (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J of syst bacteriol 44(4):715–733

    Google Scholar 

  • de Lajudie PM, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanovic N, Lassalle F, Lindstrom K et al (2019) Minimal standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol 69:1852–1863

    Article  PubMed  CAS  Google Scholar 

  • Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum Group IA strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63(9):3342–3351

    Article  CAS  PubMed  Google Scholar 

  • Diouf A, de Lajudie P, Neyra M, Kersters K, Gillis M, Martinez-Romero E, Gueye M (2000) Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). Int J of Syst and Evol Microbiol 50:159–170

    Article  CAS  Google Scholar 

  • Djordjevlc MA, Zurkowskl W, Rolfe BG (1982) Plasmids and stability of symbiotic properties of Rhizobium trifolii. J Bacteriol 151:560–568

    Article  Google Scholar 

  • Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66:2836–2846

    Article  CAS  PubMed  Google Scholar 

  • Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostata. Int J Syst Bacteriol 38:89–98

    Article  CAS  Google Scholar 

  • Dubey RC, Maheshwari DK, Kumar H, Choure K (2010) Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. Afr J Biotechnol 9(50):8619–8629

    CAS  Google Scholar 

  • Dudeja SS, Singh PC (2008) High and low nodulation in relation to molecular diversity of chickpea mesorhizobia in Indian soils. Arch Agron Soil Sci 54:109–120

    Article  CAS  Google Scholar 

  • Eisen JA (1995) The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elkan GH (1992) Taxonomy of the rhizobia. Can J Microbiol 38:446–450

    Article  Google Scholar 

  • Estrada-de los Santos P, Palmer M, Chavez-Ramırez B, Beukes C, Steenkamp E, Briscoe L, Khan N, Maluk M et al (2018) Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae. Genes (Basel) 9:389

    Article  CAS  Google Scholar 

  • Fagorzi C, Illie A, Decorosi F, Cangioli L, Viti C, Mengoni A, Di Cenzo G (2020) Symbiotic and nonsymbiotic members of the genus Ensifer (syn. Sinorhizobium) are separated into two clades based on comparative genomics and high-throughput phenotyping. Genom Biol Evol 12:2521–2534

    Article  CAS  Google Scholar 

  • Farrand SK, vanBerkum PB, Oger P (2003) Agrobacterium is a definable genus of the family Rhizobiaceae. Int J Syst Evol Microbiol 53:1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Frank B (1889) Uber die Pilzsynibiose der Legutninosen. Berichte der Deutschen Botanischen Gesellschaft 7:332–346

    Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  CAS  PubMed  Google Scholar 

  • Fred EB, Baldwin IL, McCoy E (1932) Root nodule bacteria and leguminous plants. University of Wisconsin Studies in Science, vol 5. University of Wisconsin Press, Madison

  • Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F et al (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293:668–672

    Article  CAS  PubMed  Google Scholar 

  • Gan HM, Lee MVL, Savka MA (2019) Improved genome of Agrobacterium radiobacter type strain provides new taxonomic insight into Agrobacterium genomo species 4. PeerJ 7:63–66

    Article  Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family VII. Bradyrhizobiaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, volume two the proteobacteria, part C the alpha-, beta-, delta-, and epsilon proteobacteria. Springer, New York, pp 438–476

    Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JP (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez V, Santamaría RI, Bustos P, Perez-Carrascal OM, Vinuesa P, Juarez S, Martínez-Flores I, Cevallos MÁ, Brom S, Martínez-Romero E, Romero D (2019) Phylogenomic Rhizobium species are structured by a continuum of diversity and genomic clusters. Front Microbiol 10:910

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, Deley DJ, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW (1991) Proposed minimal standards for the description of new genera and species of root-nodulating and stem-nodulating bacteria. Int J Syst Evol Microbiol 41:582–587

    Google Scholar 

  • Green PN, Bousfield IJ (1983) Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito and Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 33:875–877

    Article  Google Scholar 

  • Gronemeyer JL, Kulkarni A, Berkelmann D, Hurek T, Reinhold-Hurek B (2014) Identification and characterization of rhizobia indigenous to the Okavango region in sub-Saharan Africa. Appl Environ Microbiol 4:1–17

    Google Scholar 

  • Harrison SP, Mytton LR, Skot L, Dye M, Cresswell A (1992) Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can J Microbiol 38:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Harrison PW, Lower RP, Kim NK, Young JP (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18:141–148

    Article  CAS  PubMed  Google Scholar 

  • Hellriegel H, Wilfarth H (1888) Untersuchungen uber die Stickstoffnahrung der Grammeen und Legummosen, Beilageheft zu der Zeitschrift des Vereins Rubenzucker-Jndustrie Deutschen Reiches. Buchdruckerei der “Post,” Berlin, pp 1–234

  • Hernandez-Lucas I, Segovia L, Martinez-Romero E, Pueppke S (1995) Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris. Appl Envn Microbiol 61:2775–2779

    Article  CAS  Google Scholar 

  • Homnbrecher G, Brewin NJ, Johnston AWB (1981) Linkage of genes for nitrogenase and nodulation ability on plasmid in Rhizobium leguminosarum and R. phaseoli. Mol Gen Genet 182:133–136

    Article  Google Scholar 

  • Janczarek M, Kalita M, Skorupska AM (2009) New taxonomic markers for identification of Rhizobium leguminosarum and discrimination between closely related species. Arch Microbiol 191:207–219

    Article  CAS  PubMed  Google Scholar 

  • Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF (2015) Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol 65:399–406

    Article  CAS  PubMed  Google Scholar 

  • Jordan DC (1982) Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139

    Article  Google Scholar 

  • Jordan DC (1984) Family III. Rhizobiaceae Conn 1938. In: Krieg N, Holt RG (eds) Bergey’s manual of systematic bacteriology, vol 1, 1st edn. The Williams and Wilkins, Baltimore, pp 234–235

    Google Scholar 

  • Jordan DC, Allen ON (1974) Family Rhizobiaceae. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 261–267

    Google Scholar 

  • Judicial Commission of the International Committee on Systematics of Prokaryotes (2008) The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name 'Sinorhizobium adhaerens' is not validly published. Opinion 84. Int J Syst Evol Microbiol 58(8):1973

  • Kampfer P, Neef A, Salkinoja-Salonen MS, Busse H (2002) Chelatobacter heintzii (Auling et al. 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al. 1992). Int J Syst Evol Microbiol 52:835–839

    CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7(6):331–338

    Article  CAS  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9(6):189–197

    Article  PubMed  Google Scholar 

  • Kanso S, Patel BK (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 53:401–406

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan R, Jegan S, Ganga V, Prabavathy VR, Tushar L, Sasikala C, Ramana CV (2013) Ciceribacter lividus gen. nov., sp. nov., isolated from rhizosphere soil of chickpea (Cicer arietinum L.). Int J Syst Evol Microbiol 63:4484–4488

    Article  CAS  PubMed  Google Scholar 

  • Kimes NE, López-Pérez M, Flores-Félix JD, Ramírez-Bahena MH, Igual JM, Peix A, Rodriguez-Valera F, Velázquez E (2015) Pseudorhizobium pelagicum gen. nov., sp. nov. isolated from a pelagic Mediterranean zone. Syst Appl Microbiol 38:293–299

    Article  PubMed  Google Scholar 

  • Koonin EV, Makarova KS, Wolf YI (2021) Evolution of microbial genomics: conceptual shifts over a quarter century. Trends Microbiol 29(7):582–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM, Njeru EM (2018) Genetic Characterization and diversity of rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) Varieties Front Microbiol 9:968

  • Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P, Shamsani NJ et al (2015) Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum. Open Biol 5:140133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuzmanovic N, Smalla K, Gronow S, Puławska J (2018) Rhizobium tumorigene ssp. Nov., a novel plant tumorigenic bacterium isolated from canegall tumors on thornless blackberry. Sci Rep 8:9051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuzmanovic N, Fagorzi C, Mengoni A, Lassalle F, diCenzo GC (2022) Taxonomy of Rhizobiaceae revisited: proposal of a new framework for genus delimitation. Int J Syst Evol Microbiol 72:005243

    Article  Google Scholar 

  • Laranjo M, Young JPW, Oliveria S (2012) Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Micobiol 35:359–367

    Article  CAS  Google Scholar 

  • Lassalle F, Dastgheib SMM, Zhao F-J, Zhang J, Verbarg S, Frühling A, Brinkmann H, Osborne TH (2021) Phylogenomics reveals the basis of adaptation of Pseudorhizobium species to extreme environments and supports a taxonomic revision of the genus. Syst Appl Microbiol 44:126165

    Article  PubMed  Google Scholar 

  • Lee K-B, De Backer P, Aono T, Liu C-T, Suzuki S, Suzuki T et al (2008) The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 9:271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Gao R, Chen Y, Xue D, Han J, Wang J, Dai Q, Lin M, Ke X, Zhang W (2020) Isolation and Identification of Microvirga thermotolerans HR1, a novel thermo-tolerant bacterium, and comparative genomics among Microvirga species. Microorganisms 8:101

    Article  PubMed Central  CAS  Google Scholar 

  • Lindstrom K, Aserse AA, Mousavi SA (2015) Evolution and taxonomy of nitrogen-fixing organisms withemphasis on rhizobia. In: de Bruijn FJ (ed) Biological nitrogen fixation, 1st edn. Wiley, Hoboken, pp 21–37

    Chapter  Google Scholar 

  • Liu X, You S, Liu H, Yuan B, Wang H, James EK, Wang F, Cao W et al (2020) Diversity and geographic distribution of microsymbionts associated with invasive Mimosa species in Southern China. Front Microbiol 11:63389

    Google Scholar 

  • Lloret L, Ormeño-Orrillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp. nov. a new species nodulating Acacia angustissima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30(4):280–290

    Article  CAS  PubMed  Google Scholar 

  • Lohnis F, Hansen R (1921) Nodule bacteria of leguminous plants. J Agric Res 20:543–556

    Google Scholar 

  • Lopez-Guerrero MG, Ormeno-Orrillo E, Acosta JL, Mendoza-Vargas A, Rogel MA, Ramirez MA, Rosenblueth M, Martinez-Romero J, Martinez-Romero E (2012a) Rhizobial extrachromosomal replicon variability, stability, and expression in natural niches. Plasmid 68:149–158

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Guerrero MG, Ormeno-Orrillo E, Velazquez E, Rogel MA, Acosta JL, Gonzalez V, Martinez J, Martinez-Romero E (2012b) Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 35:353–358

    Article  PubMed  Google Scholar 

  • Lyra M, Freitas A, Silva M, Bezerra R, Silva V, Silva A, Mergulhao A, Dantas E, Santos C (2019) Diversity of rhizobia isolated from nodules of indigenous tree legumes from the Brazilian dry forest. Acta Agron 68(1):47–55

    Article  Google Scholar 

  • Makkar NS, Casida Jr.LE, (1987) Cupriavidus necator gen. nov.: sp. nov.: a nonobligate bacterial predator of bacteria in soil. Int J Syst Bacteriol 37:323–326

    Article  Google Scholar 

  • Maynaud G, Willems A, Soussou S, Vidal C, Mauré L, Moulin L, Cleyet-Marel JC, Brunelc B (2012) Molecular and phenotypic characterization of strains nodulating Anthyllis vulneraria in mine tailings, and proposal of Aminobacter anthyllidis sp. nov., the first definition of Aminobacter as legume-nodulating bacteria. Syst Appl Microbiol 35:65–72

    Article  CAS  PubMed  Google Scholar 

  • Menendez E, Flores-Felix JD, Ramirez-Bahena MH, Igual JM, Garcia-Fraile P, Peix A, Velazquez E (2020) Genome analysis of Endobacterium cerealis, a novel genus and species isolated from Zea mays roots in North Spain. Microorganisms 8:939

    Article  CAS  PubMed Central  Google Scholar 

  • Mergaert J, Swing J (2006) Family IV. Phyllobacteriaceae fam. nov. In: list of new names and new combinations previously effectively, but not validly published, validation list no 107. Int J Syst Evol Microbiol 56:1–6

    Article  Google Scholar 

  • Mergaert J, Cnockaert MC, Swings J (2002) Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 52:1821–1823

    CAS  PubMed  Google Scholar 

  • Miranda-Sanchez F, Rivera J, Vinuesa P (2016) Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes. Environ Microbiol 18:2375–2391

    Article  CAS  PubMed  Google Scholar 

  • Moura EG, Carvalho CS, Bucher CPC, Souza JLB, Aguiar ACF, Ferraz Junior ASL, Bucher CA, Coelho KP (2020) Diversity of Rhizobia and importance of their interactions with legume trees for feasibility and sustainability of the tropical agrosystems. Diversity 12:206

    Article  CAS  Google Scholar 

  • Mousavi SA, Osterman N, Wahlberg X, Nesme C, Lavire L, Vial L, de Lajudie P, Lindström K (2014) Phylogeny of the Rhizobium-Allorhizobium Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37:208–215

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindstrom K (2015) Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and thirteen new species combinations. Syst Appl Microbiol 38(2):84–90

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Sakane T, Yokota A (1996) Transfer of “Pseudomonas riboflavin” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22

    Article  CAS  PubMed  Google Scholar 

  • Nakatsukasa H, Uchiumi T, Kucho K, Suzuki A, Higashi S, Abe M (2008) Transposon mediation allows a symbiotic plasmid of Rhizobium leguminosarum bv. trifolii to become a symbiosis island in Agrobacterium and Rhizobium. J Gen Appl Microbiol 54:107–118

    Article  CAS  PubMed  Google Scholar 

  • Nandwani R, Dudeja SS (2009) Molecular diversity of a native mesorhizobial population nodulating chickpea (Cicer arietinum L.) in Indian soils. J Basic Microbiol 49(5):463–70

    Article  CAS  PubMed  Google Scholar 

  • Niemann S, Puhler A, Tichy HV, Simon R, Selbitschka W (1997) Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 8:477–484

    Article  Google Scholar 

  • Notification List IJSEM (2002) Nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania. Int J Syst Evol Microbiol 52:1077–1079

    Google Scholar 

  • Ogutcu H, Adiguzel A, Gulluce M, Karadayi M, Sahin F (2009) Molecular characterization of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum-Turkey. Romanian Biotechnol Lett 14(2):4294–4300

    Google Scholar 

  • Onyango B, Beatrice A, Regina N, Koech P, Skilton R, Francesca S (2015) Morphological, genetic, and symbiotic characterization of root nodule bacteria isolated from Bambara groundnuts (Vigna subterranea L. Verdc) from soils of Lake Victoria Basin, Western Kenya. J Appl Biol Biotechnol 3:1–10

    Google Scholar 

  • Oren A, Garrity GM (2016) Validation List no.172. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 66:4299–4305

    Article  PubMed  Google Scholar 

  • Ormeno-Orrillo E, Servín-Garciduenas L, Rogel MA, González V, Peralta H, Mora J, Martinez-Romero J, Martínez-Romero E (2015) Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 38:287–291

    Article  PubMed  Google Scholar 

  • Osterman J, Marsh J, Laine PK, Zeng Z, Alatalo E, Sullivan JT et al (2014) Genome sequencing of two Neorhizobium galegae strains reveals a noeT gene responsible for the unusual acetylation of the nodulation factors. BMC Genomics. https://doi.org/10.1186/1471-2164-15-500

    Article  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P (2018) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J of Syst Bacteriol 26:226–229

    Article  CAS  Google Scholar 

  • Paulitsch F, Dall’Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M (2020) Paraburkholderia atlantica sp. nov. and Paraburkholderia franconis sp. nov., two new nitrogen-fixing nodulating species isolated from Atlantic Forest soils in Brazil. Arch Microbiol 202:1369–1380

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Rivas R, Trujillo ME, Vancanneyt M, Velazquez E, Willems A (2005) Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55:1163–1166

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42

    Article  Google Scholar 

  • Perez-Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P, González V (2016) Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol 18:2660–2676

    Article  CAS  PubMed  Google Scholar 

  • Pinto FGS, Hungria M, Mercante FM (2007) Polyphasic characterization of Brazilian Rhizobium tropici strains effective in fixing N2 with common bean (Phaseolus vulgaris L.). Soil Biol Biochem 39:1851–1864

    Article  CAS  Google Scholar 

  • Platero R, James EK, Rios C, Iriarte A, Sandes L, Zabaleta M, Battistoni F, Fabiano E (2016) Novel Cupriavidus strains isolated from root nodules of native Uruguayan Mimosa species. Appl Environ Microbiol 82:3150–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahi P, Khairnar M, Hagir A, Narayan A, Jain KR, Madamwar D, Pansare A, Shouche Y (2021) Peteryoungia gen. nov. with four new species combinations and description of Peteryoungia desertarenae sp. nov., and taxonomic revision of the genus Ciceribacter based on phylogenomics of Rhizobiaceae. Arch Microbiol 203:3591–3604

    Article  CAS  PubMed  Google Scholar 

  • Rahmani HA, Rasanen LA, Afshari M, Lindstrom K (2011) Genetic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in soils of Iran. Appl Soil Ecol 48:287–293

    Article  Google Scholar 

  • Rai R, Dash PK, Trilochan M, Singh A (2012) Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Ind J of Experiment Biol 50:340–350

    CAS  Google Scholar 

  • Ramirez-Bahena MH, Garcia-Fraile P, Peix A et al (2008) Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 58:2484–2490

    Article  CAS  PubMed  Google Scholar 

  • Rao DLN, Mohanty SR, Acharya C, Atoliya N (2018) Rhizobial taxonomy—current status. IUNFC Newslett 3:1

    Google Scholar 

  • Rashid MH, Young JPW, Everall I, Clercx P, Willems A, Santhosh Braun M, Wink M (2015) Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov., from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 65:3037–3045

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro RA, Barcellos FG, Thompson FL, Hungria M (2009) Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (Phaseolus vulgaris L.) reveals unexpected taxonomic diversity. Res Microbiol 160(4):297–306

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marcon Delamuta JR, Rogel MA, Martínez-Romero E et al (2015) Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) geneticpool. Int J Syst Evol Microbiol 65:3162–3169

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Willems A, Subba-Rao NS, Mateos PF, Dazzo FB, Kroppenstedt RM, Martinez-Molina E, Gillis M, Velazquez E (2003) Description of Devosia neptuniae sp. nov. that nodulates and fixes nitrogen in symbiosis with Neptunia natans, an aquatic legume from India. Syst Appl Microbiol 26:47–53

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32(2):101–110

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg C, Boistard P, Denarie J, Casse-Delbart F (1981) Genes controlling early and late functions in symbiosis are located on a megaplasmid in Rhizobium meliloti. Mol Gen Genet 184:326–333

    Article  CAS  PubMed  Google Scholar 

  • Ruan ZP, Cao W-M, Zhang X, Liu J-T, Zhu J-C, Hu B, Jiang J-D (2020) Rhizobium terrae sp. nov., isolated from an oil-contaminated soil in China. Curr Microbiol 77:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Saidi S, Ramirez-Bahena MH, Santillana N, Zuniga D, Álvarez-Martínez E, Peix A, Mhamdi R, Velázquez E (2014) Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 64:242–247

    Article  CAS  PubMed  Google Scholar 

  • Sanford RA, Lloyd KG, Konstantinidis KT, Loffler RE (2021) Microbial taxonomy run amok. Trends Microbiol 29(5):394–404

    Article  CAS  PubMed  Google Scholar 

  • Santamaria RI, Bustos P, Perez-Carrascal OM, Miranda-Sánchez F, Vinuesa P, Martínez-Flores I et al (2017) Complete genome sequences of eight Rhizobium symbionts associated with common bean (Phaseolus vulgaris). Genome Announc 5:e00645-e717

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawada H, Kuykendal LD, Young JM (2003) Changing concepts in the systematics of bacterial nitrogen-fixing legume symbionts. J Gen Appl Microbiol 49:155–179

    Article  CAS  PubMed  Google Scholar 

  • Sentausa E, Fournier PE (2013) Advantages and limitations of genomics in prokaryotic taxonomy. Clinical microbiol and infection 19(9):790–795

    Article  CAS  Google Scholar 

  • Shamseldin A, Abdelkhalek A, Sadowsky MJ (2017) Recent changes to the classification of symbiotic, nitrogen-fixing, legume-associating bacteria: a review. Symbiosis 71:91–109

    Article  Google Scholar 

  • Shiraishi A, Matsushita N, Hougetsu T (2010) Nodulation in black locust by the gamma-proteobacteria Pseudomonas sp. and the beta-proteobacteria Burkholderia sp. Syst Appl Microbiol 33:269–274

    Article  CAS  PubMed  Google Scholar 

  • Sikora S, Redzepovic S (2003) Genotypic characterisation of indigenous soybean rhizobia by PCR-RFLP of 16S rDNA, rep-PCR and RAPD analysis. Food Technol Biotechnol 41(1):61–67

    CAS  Google Scholar 

  • Silva FV, Simoes-Araujo JL, Silva Junior JP, Xavier GR, Rumjanek NG (2012) Genetic diversity of rhizobia isolates from amazon soils using cowpea (Vigna unguiculata) as trap plant. Braz J Microbiol 43:682–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater SC, Goldman BS, Goodner B, Setubal JC, Farrand SK, Nester EW, Burr TJ, Banta L, Dickerman AW, Paulsen I (2009) Genome sequences of three agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J Bacteriol 191(8):2501–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater S, Setubal JC, Goodner B, Houmiel K, Sun J, Kaul R et al (2013) Reconciliation of sequence data and updated annotation of the genome of Agrobacterium tumefaciens C58, and distribution of a linear chromosome in the genus Agrobacterium. Appl Environ Microbiol 79:1414–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stackerbrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849

    Article  Google Scholar 

  • Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144

    Article  CAS  PubMed  Google Scholar 

  • Stepkowski T, Czaplinska M, Miedzinska K, Moulin L (2003) The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha Proteobacteria. Syst Appl Microbiol 26:483–494

    Article  CAS  PubMed  Google Scholar 

  • Stepkowski T, Moulin L, Krzyzanska A, McInnes A, Law IJ, Howieson J (2005) European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71:7041–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara M, Epstein B, Badgley B, Unno T, Xu L, Reese J et al (2013) Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol 14:R17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suneja P, Duhan JS, Bhutani N, Dudeja SS (2017) Recent biotechnological approaches to study taxonomy of legume nodule forming rhizobia. In: Gahlawat SK et al (eds) Plant biotechnology: recent advancements and developments. Springer Nature Singapore Pte Ltd., Singapore. https://doi.org/10.1007/978-981-10-4732-9_6

    Chapter  Google Scholar 

  • Suominen L, Roos C, Lortet G, Paulin L, Lindstrom K (2001) Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 18:907–916

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of number of substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Teamtisong K, Songwattana P, Noisangiam R, Piromyou P, Boonker N, Tittabutr P, Minamisawa K, Nantagij A, Okazaki S, Abe M, Uchiumi T, Teaumroong N (2013) Divergent Nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range. Microbes Environ 29:370–376

    Google Scholar 

  • Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF et al (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sc 109(22):8629–8634

    Article  CAS  Google Scholar 

  • Tighe SW, de Lajudie P, Dipietro K, Lindstrom K, Nick G, Jarvis BD (2000) Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. Int J Syst Evol Microbiol 50:787–801

    Article  CAS  PubMed  Google Scholar 

  • Tong W, Li X, Wang E, Cao Y, Chen W, Tao S, Wei G (2020) Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genomics 21:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth E, Szuroczki S, Keki Z, Boka K, Szili-Kovacs T, Schumann P (2017) Gellertiella hungarica gen. nov., sp. nov., a novel bacterium of the family Rhizobiaceae isolated from a spa in Budapest. Int J Syst Evol Microbiol 67:4565–4571

    Article  CAS  PubMed  Google Scholar 

  • Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Martinez-Molina E, Velazquez E (2005) Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov. Appl Environ Microbiol 71:1318–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valverde A, Igual JM, Peix A, Cervantes E, Velazquez E (2006) Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol 56:2631–2637

    Article  CAS  PubMed  Google Scholar 

  • van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindstrom K, Eardly BD (2003) Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandamme P, Coeyene T (2004) Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289

    Article  PubMed  Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernikos G, Medini D, Riley DR, Tettelin H (2015) Ten years of pan-genome analyses. Curr Opin Microbiol 23:148–154

    Article  CAS  PubMed  Google Scholar 

  • Vincent JM, Humphrey B (1970) Taxonomically significant group antigens in Rhizobium. J Gen Microbiol 63:379–382

    Article  CAS  PubMed  Google Scholar 

  • Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ, Martinez-Romero E (2005) Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28:702–716

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao L, Zhang L, Wu Y, Chou M, Wei G (2018) Comparative symbiotic plasmid analysis indicates that symbiosis gene ancestor type affects plasmid genetic evolution. Lett Appl Microbiol 67:22–31

    Article  CAS  PubMed  Google Scholar 

  • Werner GD, Cornwell WK, Cornelissen JH, Kiers ET (2015) Evolutionary signals of symbiotic persistence in the legume-rhizobia mutualism. Proc Natl Acad Sci USA 112(33):10262–10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Willems A, Collins MD (1993) Phylogenetic analysis of rhizobia and agrobacteria based on 16s rRNA gene sequences. Int J Syst Bacteriol 43(2):305–313

    Article  CAS  PubMed  Google Scholar 

  • Willems A, Fernandez-Lopez M, Munoz-Adelantado E, Goris J, De Vos P, Martınez-Romero E, Toro N, Gillis M (2003) Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. request for an opinion. Int J Syst Evol Microbiol 53:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Wilson JK (1944) Over five hundred reasons for abandoning the cross inoculation groups of legumes. Soil Sci 58:61–69

    Article  Google Scholar 

  • Wojciechowski MF, Lavin M, Sanderson MJ (2004) A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many wellsupported subclades within the family. Am J Bot 91:1846–1862

    Article  CAS  PubMed  Google Scholar 

  • Wojcik M, Kalita M, Malek W (2019) Numerical analysis of phenotypic properties, genomic fingerprinting, and multilocus sequence analysis of Bradyrhizobium strains isolated from root nodules of Lembotropis nigricans of the tribe Genisteae. Ann Microbiol 69:1123–1134

    Article  CAS  Google Scholar 

  • Young JM (2003) The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an opinion. Int J Syst Evol Microbiol 53:2107–2110

    Article  CAS  PubMed  Google Scholar 

  • Young JM (2004) Renaming of Agrobacterium larrymoorei Bouzarand Jones 2001 as Rhizobium larrymoorei (Bouzarand Jones 2001) comb. nov. Int J Syst Evol Microbiol 54:149

    Article  CAS  PubMed  Google Scholar 

  • Young JM (2010) Sinorhizobium versus Ensifer: may a taxonomy subcommittee of the ICSP contradict the Judicial Commission? Int J Syst Evol Microbiol 60:1711–1713

    Article  CAS  PubMed  Google Scholar 

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  • Young JPW, Johnston AWB (1989) The evolution of specificity in the legume-Rhizobium symbiosis. Trends Ecol Evol 4:341–434

    Article  CAS  PubMed  Google Scholar 

  • Young JPW, Downer HI, Eardly BD (1991) reaction-based sequencing of a 16S rRNA gene segment. J Bacteriol 173:2271–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada HA (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. un. Phylogeny of the phototrophic rhizobium strain BTAil by polymerase chain dicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    Article  CAS  PubMed  Google Scholar 

  • Young JP, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, Wexler M, Curson AR, Todd JD, Poole PS, Mauchline TH et al (2006) The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7:R34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahran HH (1997) Chemotaxonomic characterization of some fast-growing rhizobia nodulating leguminous trees. Folia Microbiol 42:367–386

    Article  CAS  Google Scholar 

  • Zahran HH, Abdel-Fattah M, Ahmad MS, Zaky AY (2003) Polyphasic taxonomy of symbiotic rhizobia from wild leguminous plants growing in Egypt. Folia Microbiol 48(4):510–520

    Article  CAS  Google Scholar 

  • Zakhia F, de Lajudie P (2001) Taxonomy of rhizobia. Agrononomy 21:569–576

    Article  Google Scholar 

  • Zheng Y, Liang J, Zhao D-L, Meng C, Xu Z-C, Xie Z-H, Zhang C-S (2020) The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in Yellow River Delta saline soils. Microorganisms 8:207

    Article  CAS  PubMed Central  Google Scholar 

  • Zong Z (2020) Genome-based taxonomy for bacteria: a recent advance. Trends Microbiol 28(11):871–874

    Article  CAS  PubMed  Google Scholar 

  • Zurdo-Pineiro JL, Rivas R, Trujillo ME, Vizcaino N, Carrasco JA, Chamber M, Palomares A, Mateos PF, Martinez-Molina E, Velazquez E (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The PK and DKM acknowledge the University Grants Commission (UGC), Government of India for financial support through UGC-BSR Faculty Fellowship. PP acknowledges the DBT, Ministry of Science and Technology, Government of India, for financial support. JR acknowledges UGC for financial support.

Author information

Authors and Affiliations

Authors

Contributions

PK and JR prepared and compiled the original manuscript. SD provided the suggestions. PP and DKM conceptualized, reviewed the work and PP, wrote, and edited the final manuscript.

Corresponding authors

Correspondence to Piyush Pandey or Dinesh Kumar Maheshwari.

Ethics declarations

Competing interests

The authors declare that they have no competing interests in any financial or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumari, J., Katiyar, P., Dheeman, S. et al. The changing paradigm of rhizobial taxonomy and its systematic growth upto postgenomic technologies. World J Microbiol Biotechnol 38, 206 (2022). https://doi.org/10.1007/s11274-022-03370-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03370-w

Keywords