Skip to main content
Log in

Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The surface of aboveground plant parts, known as the phyllosphere, is a habitat for various microorganisms called epiphytes establishing biotrophic interactions with their hosts. However, these communities can be affected by environmental and anthropogenic variations such as the application of agrochemicals. Thus, epiphytes have the capacity to survive in such environments. In this study, we obtained the genome of Pseudomonas sp. 14A, an epiphyte isolated from the pepper phyllosphere. The phylogenomic analyses suggested that Pseudomonas sp. 14A may be novel species closely related to P. moraviensis R28-S. Notably, the metabolic pathways proposed consistent with epiphytic lifestyle in Pseudomonas sp. 14A, were shared with other species displaying a different degree of phylogenetic relatedness. Furthermore, variations in configuration of metabolic gene clusters were observed, that could expand microbial metabolic diversity in close relatedness species, highlighting the relevance of microbial diversity associated with plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAGRQJ000000000. The version described in this paper is version JAGRQJ010000000.

References

  • Alvarez AH, Moreno-Sánchez R, Cervantes C (1999) Chromate efflux by means of the ChrA chromate resistance protein from Pseudomonas aeruginosa. J Bacteriol 181:7398–7400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 1 May 2018

  • Argüello JM, Raimunda D, Padilla-Benavides T (2013) Mechanisms of copper homeostasis in bacteria. Front Cell Infect Microbiol 3:73

    PubMed  PubMed Central  Google Scholar 

  • Arora PK (2015) Bacterial degradation of monocyclic aromatic amines. Front Microbiol 6:820

    PubMed  PubMed Central  Google Scholar 

  • Azhari NE, Chabaud S, Percept A et al (2007) pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment. Pest Manag Sci 63:459–467

    PubMed  Google Scholar 

  • Aznar A, Dellagi A (2015) New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J Exp Bot 66:3001–3010

    CAS  PubMed  Google Scholar 

  • Barahona E, Navazo A, Yousef-Coronado F et al (2010) Efficient rhizosphere colonization by Pseudomonas fluorescens f113 mutants unable to form biofilms on abiotic surfaces. Environ Microbiol 12:3185–3195

    CAS  PubMed  Google Scholar 

  • Ben Fekih I, Zhang C, Li YP et al (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, van Verk MC, Stringlis IA et al (2015) Unearthing the genomes of plant-beneficial Pseudomonas model strains WCS358, WCS374 and WCS417. BMC Genom. https://doi.org/10.1186/s12864-015-1632-z

    Article  Google Scholar 

  • Bernal P, Llamas MA, Filloux A (2018) Type VI secretion systems in plant-associated bacteria. Environ Microbiol 20:1–15

    PubMed  Google Scholar 

  • Bertelli C, Laird MR, Williams KP et al (2017) IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blin K, Shaw S, Steinke K et al (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell Biol Toxicol 29:397–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhry V, Runge P, Sengupta P et al (2021) Shaping the leaf microbiota: plant-microbe-microbe interactions. J Exp Bot 72:36–56. https://doi.org/10.1093/jxb/eraa417

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Shao Q, Yin L et al (2019) Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci 9:1945

    PubMed  PubMed Central  Google Scholar 

  • Chen X, Wicaksono WA, Berg G, Cernava T (2021) Bacterial communities in the plant phyllosphere harbour distinct responders to a broad-spectrum pesticide. Sci Total Environ 751:141799

    CAS  PubMed  Google Scholar 

  • Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Fact 16:1–12

    Google Scholar 

  • Cole BJ, Feltcher ME, Waters RJ et al (2017) Genome-wide identification of bacterial plant colonization genes. PLoS Biol 15:e2002860

    PubMed  PubMed Central  Google Scholar 

  • Copeland MF, Weibel DB (2009) Bacterial swarming: a model system for studying dynamic self-assembly. Soft Matter 5:1174–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnac S, Lindeberg M, Collmer A (2009) Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr Opin Microbiol 12:53–60

    CAS  PubMed  Google Scholar 

  • Darling AE, Mau B, Perna NT (2010) progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147

    PubMed  PubMed Central  Google Scholar 

  • Dong C-J, Wang L-L, Li Q, Shang Q-M (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS ONE 14:e0223847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P, Leong BJ, Last RL (2019) Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Curr Opin Plant Biol 49:8–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A et al (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570

    PubMed  Google Scholar 

  • Garrido-Sanz D, Meier-Kolthoff JP, Göker M et al (2016) Genomic and genetic diversity within the Pseudomonas fluorescens complex. PLoS One 11:e0150183

    PubMed  PubMed Central  Google Scholar 

  • Girard L, Höfte M, Mot R (2020) Lipopeptide families at the interface between pathogenic and beneficial Pseudomonas-plant interactions. Crit Rev Microbiol 46:397–419

    PubMed  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    CAS  PubMed  Google Scholar 

  • Grant JR, Stothard P (2008) The CGView server: a comparative genomics tool for circular genomes. Nucleic Acids Res 36:W181–W184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4:4

    Google Scholar 

  • Grinberg M, Orevi T, Kashtan N (2019) Bacterial surface colonization, preferential attachment and fitness under periodic stress. PLoS Comput Biol 15:e1006815

    PubMed  PubMed Central  Google Scholar 

  • Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075

    CAS  PubMed  PubMed Central  Google Scholar 

  • He K, Bauer CE (2014) Chemosensory signaling systems that control bacterial survival. Trends Microbiol 22:389–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques I, Tacão M, Leite L, Fidalgo C, Araújo S, Oliveira C, Alves A (2016) Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes. Mar Pollut Bull 109:427–434

    CAS  PubMed  Google Scholar 

  • Houben M, Van de Poel B (2019) 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene. Front Plant Sci 10:695

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Weisener CG, Ni J et al (2020) Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123597

    Article  PubMed  Google Scholar 

  • Huchelmann A, Boutry M, Hachez C (2017) Plant glandular trichomes: natural cell factories of high biotechnological interest. Plant Physiol 175:6–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SS, Yano H, Loftie-Eaton W et al (2014) Draft genome sequence of Pseudomonas moraviensis R28-S. Genome Announc 2:e00035-e00114

    PubMed  PubMed Central  Google Scholar 

  • Jia T, Yao Y, Wang R et al (2020) Dynamics relationship of phyllosphere and rhizosphere bacterial communities during the development of Bothriochloa ischaemum in copper tailings. Front Microbiol 11:869

    PubMed  PubMed Central  Google Scholar 

  • Jiménez JI, Nogales J, García JL, Díaz E (2010) A genomic view of the catabolism of aromatic compounds in Pseudomonas. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin

    Google Scholar 

  • Joo HS, Fu CI, Otto M (2016) Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 371:20150292

    PubMed  PubMed Central  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M et al (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731

    CAS  PubMed  Google Scholar 

  • Kang D, Kirienko DR, Webster P et al (2018) Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 9:804–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano Y, Suzuki K, Ohtsu I (2018) Current understanding of sulfur assimilation metabolism to biosynthesize l-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl Microbiol Biotechnol 102:8203

    CAS  PubMed  Google Scholar 

  • Korotkov KV, Sandkvist M, Hol WG (2012) The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol 10:336–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam JS, Taylor VL, Islam ST et al (2011) Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbio 2:118

    CAS  Google Scholar 

  • Lamichhane JR, Osdaghi E, Behlau F et al (2018) Thirteen decades of antimicrobial copper compounds applied in agriculture: a review. Agron Sustain Dev. https://doi.org/10.1007/s13593-018-0503-9

    Article  Google Scholar 

  • Lin H, Hu S, Liu R et al (2016) Genome sequence of Pseudomonas koreensis CRS05-R5, an antagonistic bacterium isolated from rice paddy field. Front Microbiol 7:1756

    PubMed  PubMed Central  Google Scholar 

  • Lin X, Zhang Z, Zhang L, Li X (2017) Complete genome sequence of a denitrifying bacterium, Pseudomonas sp. CC6-YY-74, isolated from Arctic Ocean sediment. Mar Genom 35:47–49

    CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llases ME, Morgada MN, Vila AJ (2019) Biochemistry of copper site assembly in heme-copper oxidases: a theme with variations. Int J Mol Sci 20:3830

    CAS  PubMed Central  Google Scholar 

  • Loper JE, Hassan KA, Mavrodi DV et al (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamphogoro TP, Maboko MM, Babalola OO et al (2020) Bacterial communities associated with the surface of fresh sweet pepper (Capsicum annuum) and their potential as biocontrol. Sci Rep 10:8560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marmulla R, Harder J (2014) Microbial monoterpene transformations-a review. Front Microbiol 5:346

    PubMed  PubMed Central  Google Scholar 

  • Martínez-Romero E, Aguirre-Noyola JL, Taco-Taype N et al (2020) Plant microbiota modified by plant domestication. Syst Appl Microbiol 43:126106

    PubMed  Google Scholar 

  • Massoni J, Bortfeld-Miller M, Jardillier L et al (2020) Consistent host and organ occupancy of phyllosphere bacteria in a community of wild herbaceous plant species. ISME J 14:245–258

    CAS  PubMed  Google Scholar 

  • Matsutani M, Fukushima K, Kayama C et al (2014) Replacement of a terminal cytochrome c oxidase by ubiquinol oxidase during the evolution of acetic acid bacteria. Biochim Biophys Acta 1837:1810–1820

    CAS  PubMed  Google Scholar 

  • Medina-Salazar SA, Rodríguez-Aguilar M, Vallejo-Pérez MR et al (2020) Biodiversity of epiphytic Pseudomonas strains isolated from leaves of pepper and lettuce. Biologia 75:773–784

    CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Google Scholar 

  • Meyer JM, Gruffaz C, Tulkki T, Izard D (2007) Taxonomic heterogeneity, as shown by siderotyping, of strains primarily identified as Pseudomonas putida. Int J Syst Evol Microbiol 57:2543–2556

    CAS  PubMed  Google Scholar 

  • Mina D, Pereira JA, Lino-Neto T et al (2020) Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microb Ecol 80:145–157

    PubMed  Google Scholar 

  • Moreno-Vivián C, Cabello P, Martínez-Luque M et al (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  PubMed Central  Google Scholar 

  • Nakamura AM, Nascimento AS, Polikarpov I (2017) Structural diversity of carbohydrate esterases. Biotechnol Res Innov 1:35–51

    Google Scholar 

  • Nakatani T, Ohtsu I, Nonaka G et al (2012) Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microb Cell Fact. https://doi.org/10.1186/1475-2859-11-62

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento FX, Rossi MJ, Glick BR (2018) Ethylene and 1-aminocyclopropane-1-carboxylate (ACC) in plant–bacterial interactions. Front Plant Sci 9:114

    PubMed  PubMed Central  Google Scholar 

  • Navarro-Garcia F, Ruiz-Perez F, Cataldi Á (2019) Type VI secretion system in pathogenic Escherichia coli: structure, role in virulence, and acquisition. Front Microbiol 10:1965

    PubMed  PubMed Central  Google Scholar 

  • Park CH, Keyhan M, Wielinga B et al (2000) Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase. Appl Environ Microbiol 66:1788–1795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul L, Mishra PK, Blumenthal RM et al (2007) Integration of regulatory signals through involvement of multiple global regulators: control of the Escherichia coli gltBDF operon by Lrp, IHF, Crp, and ArgR. BMC Microbiol. https://doi.org/10.1186/1471-2180-7-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Planchamp C, Glauser G, Mauch-Mani B (2015) Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front Plant Sci 5:719

    PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062

    CAS  PubMed  Google Scholar 

  • Rainey PB, Bailey MJ (1996) Physical and genetic map of the Pseudomonas fluorescens SBW25 chromosome. Mol Microbiol 19:521–533

    CAS  PubMed  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E et al (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21:321–332

    PubMed  Google Scholar 

  • Remus-Emsermann MNP, Schlechter RO (2018) Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218:1327–1333

    PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 32:929–931

    CAS  PubMed  Google Scholar 

  • Ringel MT, Brüser T (2018) The biosynthesis of pyoverdines. Microb Cell 5:424–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rissman AI, Mau B, Biehl BS et al (2009) Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071–2073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Silva MJ, Méndez V, Agulló L, Seeger M (2013) Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. PLoS ONE 8:e56038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryffel F, Helfrich E, Kiefer P et al (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10:632–643

    CAS  PubMed  Google Scholar 

  • Sagot B, Gaysinski M, Mehiri M et al (2010) Osmotically induced synthesis of the dipeptide N-acetylglutaminylglutamine amide is mediated by a new pathway conserved among bacteria. Proc Natl Acad Sci USA 107:12652–12657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sampedro I, Parales RE, Krell T, Hill JE (2015) Pseudomonas chemotaxis. FEMS Microbiol Rev 39:17–46

    CAS  PubMed  Google Scholar 

  • Scharf BE, Hynes MF, Alexandre GM (2016) Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol Biol 90:549–559

    CAS  PubMed  Google Scholar 

  • Schilmiller AL, Charbonneau AL, Last RL (2012) Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci USA 109:16377–16382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlechter RO, Miebach M, Remus-Emsermann MN (2019) Driving factors of epiphytic bacterial communities: a review. J Adv Res 19:57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schöner TA, Gassel S, Osawa A et al (2016) Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem 17:247–253

    PubMed  Google Scholar 

  • Schuurink R, Tissier A (2020) Glandular trichomes: micro-organs with model status? New Phytol 225:2251–2266

    PubMed  Google Scholar 

  • Silby MW, Cerdeño-Tárraga AM, Vernikos GS et al (2009) Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biol 10:R51

    PubMed  PubMed Central  Google Scholar 

  • Silby MW, Winstanley C, Godfrey SA et al (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35:652–680

    CAS  PubMed  Google Scholar 

  • Simons A, Alhanout K, Duval RE (2020) Bacteriocins, antimicrobial peptides from bacterial origin: overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms 8:639

    CAS  PubMed Central  Google Scholar 

  • Sivakumar N, Sathishkumar R, Selvakumar G et al (2020) Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. In: Yadav A, Singh J, Rastegari A, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, Cham, pp 113–172

    Google Scholar 

  • Sourjik V, Wingreen NS (2012) Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol 24:262–268

    CAS  PubMed  Google Scholar 

  • Spanu PD, Panstruga R (2017) Editorial: biotrophic plant-microbe interactions. Front Plant Sci 8:192. https://doi.org/10.3389/fpls.2017.00192

    Article  PubMed  PubMed Central  Google Scholar 

  • Taguchi F, Suzuki T, Inagaki Y et al (2010) The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. J Bacteriol 192:117–126

    CAS  PubMed  Google Scholar 

  • Tang SS, Apisarnthanarak A, Hsu LY (2014) Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev 78:3–13

    CAS  PubMed  Google Scholar 

  • Tanizawa Y, Fujisawa T, Nakamura Y (2018) DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 34:1037–1039

    CAS  PubMed  Google Scholar 

  • Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 68:229–245

    CAS  Google Scholar 

  • Trapet P, Avoscan L, Klinguer A et al (2016) The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol 171:675–693

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30

    CAS  PubMed  Google Scholar 

  • Vorholt J (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhu Z, Fu L et al (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genom 12:444

    Google Scholar 

  • Xie SS, Wu HJ, Zang HY et al (2014) Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Mol Plant Microbe Interact 27:655–663

    CAS  PubMed  Google Scholar 

  • Xin XF, Kvitko B, He S (2018) Pseudomonas syringae: what it takes to be a pathogen. Nat Rev Microbiol 16:316–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Dong Z, Fang L et al (2019) OrthoVenn2: a web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res 47:W52–W58

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

To Consejo Nacional de Ciencia y Tecnología-Secretaría de Educación Pública (CONACyT-SEP Project 236066). We thank the anonymous reviewers for their valuable comments on our manuscript.

Funding

This work was funded by Consejo Nacional de Ciencia y Tecnología-Secretaría de Educación Pública (CONACyT-SEP Project 236066).

Author information

Authors and Affiliations

Authors

Contributions

JPLA conceived and designed study. SAMS, JPLA conducted in silico experiments. SAMS, DXVM, GAB, RJG, MRVP, JPLA analyzed and interpreted data. FCG, EEM, RCR, AOL contributed analytical tools. SAMS, JPLA wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to José Pablo Lara-Ávila.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina-Salazar, S.A., Cornejo-Granados, F., Equihua-Medina, E. et al. Genome analysis of Pseudomonas sp. 14A reveals metabolic capabilities to support epiphytic behavior. World J Microbiol Biotechnol 38, 49 (2022). https://doi.org/10.1007/s11274-022-03238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-022-03238-z

Keywords

Navigation