Abstract
Paludifilum halophilum DSM 102817T is the first member of the genus Paludifilum in the Thermoactinomycetaceae family. The thermohalophilic bacterium was isolated from the solar saltern of Sfax, Tunisia and was shown to be able to produce ectoines with a relatively high-yield and to cope with salt stress conditions. In this study, the whole genome of P. halophilum was sequenced and analysed. Analysis revealed 3,789,765 base pairs with an average GC% content of 51.5%. A total of 3775 genes were predicted of which 3616 were protein-coding genes and 73 were RNA genes. The genes encoding key enzymes for ectoines (ectoine and hydroxyectoine) synthesis (ectABCD) were identified from the bacterial genome next to a gene cluster (ehuABCD) encoding a binding-protein-dependent ABC transport system responsible for ectoines mobility through the cell membrane. With the aid of KEGG analysis, we found that the central catabolic network of P. halophilum comprises the pathways of glycolysis, tricarboxylic acid cycle, and pentose phosphate. In addition, anaplerotic pathways replenishing oxaloacetate and glutamate synthesis from central metabolism needed for high ectoines biosynthetic fluxes were identified through several key enzymes. Furthermore, a total of 18 antiSMASH-predicted putative biosynthetic gene clusters for secondary metabolites with high novelty and diversity were identified in P. halophilum genome, including biosynthesis of colabomycine-A, fusaricidin-E, zwittermycin A, streptomycin, mycosubtilin and meilingmycin. Based on these data, P. halophilum emerged as a promising source for ectoines and antimicrobials with the potential to be scaled up for industrial production, which could benefit the pharmaceutical and cosmetic industries.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abdel-Aziz H, Wadie W, Abdallah DM, Lentzen G, Khayyal MT (2013) Novel effects of ectoine, a bacteria-derived natural tetrahydropyrimidine, in experimental colitis. Phytomedicine 20:585–591. https://doi.org/10.1016/j.phymed.2013.01.009
Ayadi H, Frikha-Dammak D, Fakhfakh J, Chamkha M, Hassairi I, Allouche N, Sayadi S, Maalej S (2020) The saltern-derived Paludifilum halophilum DSM 102817T is a new high-yield ectoines producer in minimal medium and under salt stress conditions. 3 Biotech 10:533. https://doi.org/10.1007/s13205-020-02512-x
Baral B, Akhgari A, Metsä-Ketelä M (2018) Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol 3:163–178. https://doi.org/10.1016/j.synbio.2018.09.001
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87
Boujelben I, Martínez-García M, Pelt JV, Maalej S (2015) Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns. Antonie Leeuwenhoek 106:675–692. https://doi.org/10.1007/s10482-014-0238-9
Brands S, Schein P, Castro-Ochoa KF, Galinski EA (2019) Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Arch Biochem Biophys 674:108097. https://doi.org/10.1016/j.abb.2019.108097
Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes In: Storz G, Hengge - Aronis R (eds) Bacterial stress responses. ASM Press, Washington DC, pp 79–97
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E (2018a) Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes 9:177. https://doi.org/10.3390/genes9040177
Czech L, Poehl S, Hub P, Stoveken N, Bremer E (2018b) Tinkering with osmotically controlled transcription allows enhanced production and excretion of ectoine and hydroxyectoine from a microbial cell factory. Appl Environ Microbiol 84:e01772–e01717. https://doi.org/10.1128/AEM.01772-17
Darling AE, Mau B, Perna NT (2010) Progressive mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147. https://doi.org/10.1371/journal.pone.0011147
Doroghazi JR, Albright J, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW (2014) A roadmap for natural product discovery based on large scale genomics and metabolomics. Nat Chem Biol l10:963–968. https://doi.org/10.1038/nchembio.1659
Frikha-Dammak D, Fardeau ML, Cayol JL et al (2016) Paludifilum halophilum gen. nov., sp. nov., a thermoactinomycete isolated from superficial sediment of a solar saltern. Int J Syst Evol Microbiol 66:5371–5378. https://doi.org/10.1099/ijsem.0.001523
Galperin MY, Makarova KS, Wolf YI, Koonin E (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269. https://doi.org/10.1093/nar/gku1223
Garcia-Estepa R, Argandona M, Reina-Bueno M, Capote N, Iglesias-Guerra F, Nieto JJ et al (2006) The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens J Bacteriol 188:3774–3784. https://doi.org/10.1128/JB.00136-06
Garcıa-Alegrıa AM, Anduro-Corona I, Pérez-Martınez CJ, Corella-Madueño MAG, Rascon-Duran ML, Astiazaran-Garcia H (2020) Quantification of DNA through the nanodrop spectrophotometer: methodological validation using standard reference material and Sprague Dawley Rat and human DNA. Int J Anal Chem. https://doi.org/10.1155/2020/8896738
Gibtan A, Park K, Woo M, Shin JK, Lee DW, Sohn JH, Song M, Roh SW, Lee SJ, Lee HS (2017) Diversity of extremely ealophilic archaeal and bacterial communities from commercial salts. Front Microbiol 8:799. https://doi.org/10.3389/fmicb.2017.00799
Graf R, Anzali S, Buenger J, Pfluecker F, Driller H (2008) The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 26:326–333. https://doi.org/10.1016/j.clindermatol.2008.01.002
Grammann K, Volke A, Kunte HJ (2002) New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581T. J Bacteriol 184:3078–3085. https://doi.org/10.1128/JB.184.11.3078-3085.2002
Hahn MB, Meyer S, Schroter MA, Kunte HJ, Solomun T, Sturm H (2017) DNA protection by ectoine from ionizing radiation: molecular mechanisms. Phys Chem Chem Phys 19:25717–25722. https://doi.org/10.1039/c7cp02860a
Han J, Gao QX, Zhang YG, Li L, Mohamad OAA, Narsing Rao MP, Xiao M, Hozzein WN, Alkhalifah DHM, Tao Y, Li WJ (2018) Transcriptomic and ectoine analysis of halotolerant Nocardiopsis gilva YIM 90087T under salt stress. Front Microbiol 9:618. https://doi.org/10.3389/fmicb.2018.00618
Hanekop N, Höing M, Sohn-Bösser L, Jebbar M, Schmitt L, Bremer E (2007) Crystal structure of the ligand-binding protein EhuB from Sinorhizobium meliloti reveals substrate recognition of the compatible solutes ectoine and hydroxyectoine. J Mol Biol 374:1237–1250. https://doi.org/10.1016/j.jmb.2007.09.071
Höppner A, Widderich N, Lenders M, Bremer E, Smits SHJ (2014) Crystal structure of the ectoine hydroxylase, a snapshot of the active site. J Biol Chem 289:29570–29583. https://doi.org/10.1074/Jbc.M114.576769
Hu D, Chen Y, Sun C, Jin T, Fan G, Liao Q, Mok KM, Simon Lee MY (2018) Genome guided investigation of antibiotics producing actinomycetales strain isolated from a Macau mangrove ecosystem. Sci Rep 8:14271. https://doi.org/10.1038/s41598-018-32076-z
Jebbar M, Sohn-Bösser L, Bremer E, Bernard T, Blanco C (2005) Ectoine-induced proteins in Sinorhizobium meliloti include an ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism. J Bacteriol 187:1293–1304. https://doi.org/10.1128/JB.187.4.1293-1304.2005
Jiang Z, Xiao M, Yang LL, Zhi XY, Li WJ (2019) Genome-based taxonomic classification within the family Thermoactinomycetaceae Int J Syst Evol Microbiol 69:2028–2036. https://doi.org/10.1099/ijsem.0.003425
Kanapathipillai M, Lentzen G, Sierks M, Park CB (2005) Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer’s beta-amyloid. FEBS Lett 579:4775–4780. https://doi.org/10.1016/j.febslet.2005.07.057
Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Res 40:109–114. https://doi.org/10.1093/nar/gkr988
Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch Microbiol 170:319–330. https://doi.org/10.1007/s002030050649
Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus Appl Environ Microbiol 75:1144–1155. https://doi.org/10.1128/AEM.02518-08
Kim J, Shin D, Kim SH, Park W, Shin Y, Kim WK, Lee SK, Oh KB, Shin J, Oh DC (2017) Borrelidins C-E: new antibacterial macrolides from a saltern-derived halophilic Nocardiopsis sp. Mar Drugs 15:166–177. https://doi.org/10.3390/md15060166
Kunte HJ, Galinski EA, Trüper HG (1993) A modified FMOC-method for the detection of aminoacid type osmolytes and tetrahydropyrimidines (ectoines). J Microbiol Methods 17:129–136. https://doi.org/10.1016/0167-7012(93)90006-4
Kunte HJ, Lentzen G, Galinski E (2014) Industrial production of the cell protectant ectoine: protection, mechanisms, processes, and products. Curr Biotechnol 3:10–25. https://doi.org/10.2174/22115501113026660037
Kuroda J, Fukai T, Konishi M, Uno J, Kurusu K, Nomura T (2000) LI-F antibiotics, a family of antifungal cyclic depsipeptides produced by Bacillus polymyxa L-1129. Heterocycles 53:1533–1549
León MJ, Hoffmann T, Sánchez-Porro C, Heider J, Ventosa A, Bremer E (2018) Compatible solute synthesis and import by the moderate halophile Spiribacter salinus: physiology and genomics. Front Microbiol 9:108. https://doi.org/10.3389/fmicb.2018.00108
Ma H, Zhao Y, Huang W, Zhang L, Wu F, Ye J, Chen GQ (2020) Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat commun 11:3313. https://doi.org/10.1038/s41467-020-17223-3
Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Ann Rev Genet 16:135–168
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. https://doi.org/10.1016/j.micres.2013.07.014
Min B, Kim S, Oh YL, Kong WS, Park H, Cho H, Jang KY, Kim JG, Choi IG (2018) Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus BMC Genom 19:789. https://doi.org/10.1186/s12864-018-5159-y
Ngugi DK, Blom J, Stepanauskas R, Stingl U (2016) Diversification and niche adaptations of Nitrospina-like bacteria in the polyextreme interfaces of red sea brines. ISME J 10:1383–1399. https://doi.org/10.1038/ismej.2015.214
Ono H, Sawada K, Khunajakr N, Tao T, Yamamoto M, Hiramoto M, Shinmyo U, Takano M, Murooka Y (1999) Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata J Bacteriol 181:91–99
Pastor JM, Salvador M, Argandona M, Berna V, Reina-Bueno M, Csonka LN et al (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801. https://doi.org/10.1016/j.biotechadv.2010.06.005
Pastor JM, Bernal V, Salvador M, Argandoña M, Vargas C, Csonka L, Sevilla A, Iborra JL, Nieto JJ, Cánovas M (2013) Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J Biol Chem 288:17769–17781. https://doi.org/10.1074/jbc.M113.470567
Piubeli F, Salvador M, Argandoña M, Nieto JJ, Vicente Bernal V, Pastor JM, Cánovas M, Vargas C (2018) Insights into metabolic osmoadaptation of the ectoines-producer bacterium Chromohalobacter salexigens through a high-quality genome scale metabolic model. Microb Cell Fact 17:2–20. https://doi.org/10.1186/s12934-017-0852-0
Prabhu J, Schauwecker F, Grammel N, Keller U, Bernhard M (2004) Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 70:3130–3132. https://doi.org/10.1128/AEM.70.5.3130-3132.2004
Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph Methylomicrobium alcaliphilum 20Z. Arch Microbiol 184:286–297. https://doi.org/10.1007/s00203-005-0042-z
Reshetnikov AS, Khmelenina VN, Mustakhimov II, Trotsenko YA (2011) Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 495:15–30. https://doi.org/10.1016/B978-0-12-386905-0.00002-4
Richter AA, Mais C-N, Czech L, Geyer K, Hoeppner A, Smits SHJ, Erb TJ, Bange G, Bremer E (2019) Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB. Front Microbiol 10:2811. https://doi.org/10.3389/fmicb.2019.02811
Rosa LT, Bianconi ME, Thomas GH, Kelly DJ (2018) Tripartite ATP-independent periplasmic (TRAP) tansporters and tripartite tricarboxylate transporters (TTT): From uptake to pathogenicity. Front Cell Infect Microbiol 8:33. https://doi.org/10.3389/fcimb.2018.00033
Schröter MA, Meyer S, Hahn MB, Solomun T, Sturm H, Kunte HJ (2017) Ectoine protects DNA from damage by ionizing radiation. Sci Rep 7:15272. https://doi.org/10.1038/s41598-017-15512-4
Schulz A, Stöveken N, Binzen IM, Hoffmann T, Heider J, Bremer E (2017) Feeding on compatible solutes: a substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol 19:926–946. https://doi.org/10.1111/1462-2920.13414
Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H et al (2011) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T Environ Microbiol 13:1973–1994. https://doi.org/10.1111/j.1462-2920.2010.02336.x
Shao Z, Deng W, Li S, He J, Ren S, Huang W, Lu Y, Zhao G, Cai Z, Wang J (2015) GlnR-mediated regulation of ectABCD transcription expands the role of the GlnR regulon to osmotic stress management. J Bacteriol 197:3041–3047. https://doi.org/10.1128/JB.00185-15
Stöveken N, Pittelkow M, Sinner T, Jensen RA, Heider J, Bremer E (2011) A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J Bacteriol 193:4456–4468. https://doi.org/10.1128/JB.00345-11
Sun Y, Zhou X, Liu J, Bao K, Zhang G, Tu G, Kieser T, Deng Z (2002) Streptomyces nanchangensis, a producer of the insecticidal polyether antibiotic nanchangmycin and the antiparasitic macrolide meilingmycin, contains multiple polyketide gene clusters. Microbiology 148:361–371. https://doi.org/10.1099/00221287-148-2-361
Ter Beek J, Guskov A, Slotboom DJ (2014) Structural diversity of ABC transporters. J Gen Physiol 143:419–435. https://doi.org/10.1085/jgp.201411164
Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880. https://doi.org/10.1111/j.1365-2958.2007.06092.x
Van Thuoc D, Loan TT, Trung TA, Quyen NV, Tung QN, Tien PQ, Sudesh K (2020) Genome mining reveals the biosynthetic pathways of polyhydroxyalkanoate and ectoines of the halophilic strain Salinivibrio proteolyticus M318 isolated from fermented shrimp paste. Mar Biotechnol 22:651–660. https://doi.org/10.1007/s10126-020-09986-z
Vargas C, Jebbar M, Carrasco R, Blanco C, Calderon MI, Iglesias-Guerra F, Nieto JJ (2006) Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens J Appl Microbiol 100:98–107. https://doi.org/10.1111/j.1365-2672.2005.02757.x
Widderich N, Höppner A, Pittelkow M, Heider J, Smits SH, Bremer E (2014) Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. PLoS ONE 9:e93809. https://doi.org/10.1371/journal.pone.0093809
Widderich N, Czech L, Elling FJ, Könneke M, Stöveken N, Pittelkow M, Riclea M, Dickschat JS, Heider J, Bremer E (2016) Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus Environ Microbiol 18:1227–1248. https://doi.org/10.1111/1462-2920.13156
Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15:22–31. https://doi.org/10.1016/j.cbpa.2010.10.020
Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B, Van der Heide T, Smith LT (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comput Biochem Physiol A: Mol Integr Physiol 130:437–460. https://doi.org/10.1016/s1095-6433(01)00442-1
Yang YL, Zhang S, Ma K, Xu Y, Tao Q, Chen Y, Chen J, Guo S, Ren J, Wang W, Tao Y, Yin WB, Liu H (2017) Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angew Chem Int Ed Engl 56:4749–4752. https://doi.org/10.1002/anie.201700565
Zhao Q, Meng Y, Li S, Lv P, Xu P, Yang C (2018) Genome sequence of Halomonas hydrothermalis Y2, an efficient ectoine producer isolated from pulp mill wastewater. J Biotechnol 285:38–41. https://doi.org/10.1016/j.jbiotec.2018.08.017
Zheng Y, Saitou A, Wang CM, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S (2019) Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria Front Microbiol 10:893. https://doi.org/10.3389/fmicb.2019.00893
Acknowledgements
We are grateful to the General Direction of Scientific Research of Tunisia (DGRS) for financial support through the project PRF2019-D1P1.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there are no conflicts of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Frikha-Dammak, D., Ayadi, H., Hakim-Rekik, I. et al. Genome analysis of the salt-resistant Paludifilum halophilum DSM 102817T reveals genes involved in flux-tuning of ectoines and unexplored bioactive secondary metabolites. World J Microbiol Biotechnol 37, 178 (2021). https://doi.org/10.1007/s11274-021-03147-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11274-021-03147-7


