Skip to main content
Log in

Indigofera tinctoria leaf powder as a promising additive to improve indigo fermentation prepared with sukumo (composted Polygonum tinctorium leaves)

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Being insoluble in the oxidize form, indigo dye must be solubilized by reduction for it to penetrate textile. One of the procedures is the reduction by natural bacterial fermentation. Sukumo, composted leaves of Polygonum tinctorium, is a natural source of indigo in Japan. Although sukumo has an intrinsic bacterial seed, the onset of indigo reduction with this material may vary greatly. Certain additives improve indigo fermentation. Here, we studied the effects of Indigofera tinctoria leaf powder (LP) on the initiation of indigo reduction, bacterial community, redox potential (ORP), and dyeing intensity in the initial stages and in aged fermentation fluids prepared with sukumo. I. tinctoria LP markedly decreased ORP at day 1 and stabilised it during early fermentation. These effects could be explained by the phytochemicals present in I. tinctoria LP that act as oxygen scavengers and electron mediators. Using next generation sequencing results, we observed differences in the bacterial community in sukumo fermentation treated with I. tinctoria LP, which was not influenced by the bacterial community in I. tinctoria LP per se. The concomitant decrease in Bacillaceae and increase in Proteinivoraceae at the onset of fermentation, increase in the ratio of facultative to obligate anaerobes (F/O ratio), or the total abundance of facultative anaerobes (F) or obligate anaerobes (O) (designated F + O) are vital for the initiation and maintenance of indigo reduction. Hence, I. tinctoria LP improved early indigo reduction by decreasing the ORP and hasten the appropriate transitions in the bacterial community in sukumo fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183

    Article  CAS  Google Scholar 

  • Aino K, Hirota K, Okamoto T, Tu Z, Matsuyama H, Yumoto I (2018) Microbial communities associated with indigo fermentation that thrive in anaerobic alkaline environments. Front Microbiol 9:1–16

    Article  Google Scholar 

  • Boltyanskaya YV, Kevbrin VV (2016) Trophic interactions of proteolytic bacteria Proteinivorax tanatarense in an alkaliphilc microbial community. Microbiology 85:481–487

    Article  CAS  Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857

    Article  CAS  Google Scholar 

  • Callahan BJ (2016) DADA2: High resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  Google Scholar 

  • Cardon D (2007) Natural dyes: sources, tradition, technology and science. Archetype Publications Ltd, London

    Google Scholar 

  • Chavan RB (2015) Indigo dye and reduction techniques. In: Roshan P (ed) Denim. Cambridge: Woodhead Publishing Ltd, pp. 37–67

  • Clark RJH, Cooksey CJ, Daniel MAM, Withnall R (1993) Indigo, woad, and Tyrian Purple: important vat from antiquity to the present. Endeavour 17:191–199

    Article  CAS  Google Scholar 

  • Dellai A, Dridi D, Lemorvan V, Robert J, Cherif A, Mosrati R, Mansour HB (2013) Decolorization does not always mean detoxification: case study of a newly isolated Pseudomonas peli for decolorization of textile wastewater. Environ Sci Pollut Res 20:5790–5796

    Article  CAS  Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688

    Article  CAS  Google Scholar 

  • Głowacki ED, Voss G, Leonat L, Irimia-Vladu M, Bauer S, Sariciftci NS (2012) Indigo and tyrian purple e from ancient natural dyes to modern organic semiconductors. Isr J Chem 52:540e551

    Article  Google Scholar 

  • Hirota K, Aino K, Nodasaka Y, Morita N, Yumoto I (2013a) Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:464–469

    Article  CAS  Google Scholar 

  • Hirota K, Aino K, Yumoto I (2013b) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308

    Article  CAS  Google Scholar 

  • Hirota K, Okamoto T, Matsuyama H, Yumoto I (2016) Polygonibacillus indicireducens gen nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol 66:4650–4656

    Article  CAS  Google Scholar 

  • Hsu TM, Welner DH, Russ ZN, Cervantes B, Prathuri RL, Adams PD, Dueber JE (2018) Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat Chem Biol 14:256–261

    Article  CAS  Google Scholar 

  • Light SH, Su L, Rivera-Lugo R, Cornejo JA, Louie A, Iavarone AT, Ajo-Franklin CM, Portnoy DA (2018) A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562:140–146

    Article  CAS  Google Scholar 

  • Nakagawa K, Takeuchi M, Kikuchi M, Kiyofuji S, Kugo M, Sakamoto T, Kano K, Ogawa J, Sakuradani E (2021) Mechanistic insights into indigo reduction in indigo fermentation: a voltametric study. Electrochemistry 89:25–30

    Article  CAS  Google Scholar 

  • Nakajima K, Hirota K, Nodasaka Y, Yumoto I (2005) Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 55:1525–1530

    Article  CAS  Google Scholar 

  • Nicholson SK, John P (2005) The mechanism of bacterial. Appl Microbial Biotechnol 68:117–123

    Article  CAS  Google Scholar 

  • Nishita M, Hirota K, Matsuyama H, Yumoto I (2017) Development of media to accelerate the isolation of indigo-reducing bacteria, which are difficult to isolate using conventional media. World J Microbiol Biotechnol 33:133

    Article  Google Scholar 

  • Okamoto T, Aino K, Narihiro T, Matsuyama H, Yumoto I (2017) Analysis of microbiota involved in the aged natural fermentation of indigo. World J Microbiol Biotechnol 33:70

    Article  Google Scholar 

  • Park S, Ryu J-Y, Seo J, Hur H-G (2012) Isolation and characterization of alkaliphilic and thermotolerant bacteria that reduce insoluble indigo to soluble leuco-indigo from indigo dye vat. J Korean Soc Appl Biol Chem 55:83–88

    Article  CAS  Google Scholar 

  • Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enable a gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biot 77:1119–1129

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  Google Scholar 

  • Samanta AK, Agarwal P (2009) Application of natural dyes on textiles. Indian J Fiber Text Res 34:384–399

    CAS  Google Scholar 

  • Sharma V, Singh R, Sharma S (2016) Comparative phytochemical investigation with TLC profiling of Indigofera tinctoria Linn. Natl Acad Sci Lett 39:337–334

    Article  CAS  Google Scholar 

  • Srinivasan S, Wankhar W, Rathinasamy S et al (2016) Free radical scavenging potential and HPTLC analysis of Indigofera tinctorialinn (Fabaceae). J Pharm Anal 6:125–131

    Article  Google Scholar 

  • Tu Z, Lopes HFS, Hirota K, Yumoto I (2019a) Analysis of the microbiota involved in the early changes associated with indigo reduction in the natural fermentation of indigo. World J Microbiol Biotechnol 35:123

    Article  Google Scholar 

  • Tu Z, Lopes HFS, Igarashi K, Yumoto I (2019b) Characterization of the microbiota in long- and short-term natural indigo fermentation. J Ind Microbiol Biotechnol 46:1657–1667

    Article  CAS  Google Scholar 

  • Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2:16

    Article  Google Scholar 

  • Verbarg S, Rheims H, Emus S, Frühling A, Kroppenstedt RM, Stackebrandt E, Schumann P (2004) Erysipelothrix inopinata sp. nov., isolated in the course of sterile filtration of vegetable peptone broth, and description of Erysipelotrichaceae fam. nov. Int J Syst Evol Microbiol 54:221–225

    Article  CAS  Google Scholar 

  • Yi C, Tan X, Bie B, Ma H, Yi H (2020) Practical and environmental-friendly indirect electrochemical reduction of indigo and dyeing. Sci Rep 10:4927

    Article  CAS  Google Scholar 

  • You LX, Liu LD, Xiao Y, Dai YF, Chen BL, Jiang YX, Zhao F (2018) Flavins mediate extracellular electron transfer in Gram-positive Bacillus megaterium strain LLD-1. Bioelectrochemistry 119:196–202

    Article  CAS  Google Scholar 

  • Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383

    Article  CAS  Google Scholar 

  • Yumoto I, Hirota K, Nodasaka Y, Tokiwa Y, Nakajima K (2008) Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 58:901–905

    Article  CAS  Google Scholar 

  • Zhang L, Wang L, Cunningham AB, Shi Y, Wang Y (2019) Island blues: indigenous knowledge of indigo-yielding plant species used by Hainan Miao and Li dyers on Hainan Island. China. J Ethnobiol Ethnomed 15:31

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Institute for Fermentation, Osaka (IFO) (No. G-2020-3-035). We thank Editage (www.editage.com) for English language editing.

Funding

This work received no financial support that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Contributions

HFSL, HS, and IY. conceived and designed the experiments. HFSL, ZT and HF performed the experiments. HFSL, ZT, HF and IY analysed the data. HFSL and IY wrote the manuscript.

Corresponding author

Correspondence to Isao Yumoto.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2001 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Fátima Silva Lopes, H., Tu, Z., Sumi, H. et al. Indigofera tinctoria leaf powder as a promising additive to improve indigo fermentation prepared with sukumo (composted Polygonum tinctorium leaves). World J Microbiol Biotechnol 37, 179 (2021). https://doi.org/10.1007/s11274-021-03142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-021-03142-y

Keywords

Navigation