Skip to main content

Aptamers isolated against mosquito-borne pathogens

Abstract

Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Material submitted is original; all authors are in agreement to have the article published.

References

  1. Abalo AA, Argondizzo APC, Morais LM et al (2019) Fluorescence spectroscopy study of single-stranded nucleic acid aptamer species against NS5 Zika virus. AIP Conf Proc 2186(1):1–5. https://doi.org/10.1063/1.5138052

    CAS  Article  Google Scholar 

  2. Alshamaileh H, Wang T, Xiang D et al (2017) Aptamer-mediated survivin RNAi enables 5-fluorouracil to eliminate colorectal cancer stem cells. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-05859-z

    CAS  Article  Google Scholar 

  3. Alves LN, Abalo AA, Argondizzo APC et al (2018) Selection and evaluation of the binding of aptamers against NS5 Zika virus using fluorescence spectroscopy. AIP Conf Proc 2040(1):1–5. https://doi.org/10.1063/1.5079160

    CAS  Article  Google Scholar 

  4. Anderson GW Jr, Saluzzo JF, Ksiazek TG et al (1989) Comparison of in vitro and in vivo systems for propagation of Rift Valley fever virus from clinical specimens. Res Virol 140(2):129–138. https://doi.org/10.1016/s0923-2516(89)80090-1

    Article  PubMed  Google Scholar 

  5. Ashley AA, Phyo AP, Woodrow CJ (2018) Malaria. Lancet 391(10130):1608–1621. https://doi.org/10.1016/S0140-6736(18)30324-6

    Article  PubMed  Google Scholar 

  6. Bäckman S, Näslund J, Forsman M et al (2015) Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Sci Rep 5(1):7793. https://doi.org/10.1038/srep07793

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Balinsky CA, Schmeisser H, Ganesan S et al (2013) Nucleolin interacts with the Dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol 87(24):13094–13106. https://doi.org/10.1128/JVI.00704-13

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bárdos V, Rosický B (1979) A proposal for the evaluation of vertebrates as to their role in the circulation of arboviruses. Folia Parasitol 26(1):89–91

    Google Scholar 

  9. Barfod A, Persson T, Lindh J (2009) In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1. Parasitol Res 105(6):1557–1566. https://doi.org/10.1007/s00436-009-1583-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barzon L, Palù G (2018) Recent developments in vaccines and biological therapies against Japanese encephalitis virus. Expert Opin Biol Ther 18(8):851–864. https://doi.org/10.1080/14712598.2018.1499721

    CAS  Article  PubMed  Google Scholar 

  11. Basso CR, Crulhas BP, Magro M et al (2019) A new immunoassay of hybrid nanomater conjugated to aptamers for the detection of dengue virus. Talanta 197:482–490. https://doi.org/10.1016/j.talanta.2019.01.058

    CAS  Article  PubMed  Google Scholar 

  12. Bharucha T, Sengvilaipaseuth O, Vongsouvath M et al (2018) Development of an improved RT-qPCR Assay for detection of Japanese encephalitis virus (JEV) RNA including a systematic review and comprehensive comparison with published methods. PLoS ONE 13(3):1–18. https://doi.org/10.1371/journal.pone.0194412

    CAS  Article  Google Scholar 

  13. Bharucha T, Shearer FM, Vongsouvath M et al (2020) A need to raise the bar: a systematic review of temporal trends in diagnostics for Japanese encephalitis virus infection, and perspectives for future research. Int J Infect Dis 95:444–456. https://doi.org/10.1016/j.ijid.2020.03.039

    Article  PubMed  PubMed Central  Google Scholar 

  14. Birch CM, Hou HW, Han J et al (2015) Identification of malaria parasite-infected red blood cell surface aptamers by inertial microfluidic SELEX (I-SELEX). Sci Rep 5(1):1–16. https://doi.org/10.1038/srep11347

    Article  Google Scholar 

  15. Bird BH, Bawiec DA, Ksiazek TG et al (2007) Highly sensitive and broadly reactive quantitative reverse transcription-PCR assay for high-throughput detection of Rift Valley fever virus. J Clin Microbiol 45(11):3506–3513. https://doi.org/10.1128/JCM.00936-07

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Bird BH, Ksiazek TG, Nichol ST et al (2009) Rift Valley fever virus. J Am Vet Med Assoc 234(7):883–893. https://doi.org/10.2460/javma.234.7.883

    Article  PubMed  Google Scholar 

  17. Bosak A, Saraf N, Willenberg A et al (2019) Aptamer–gold nanoparticle conjugates for the colorimetric detection of arboviruses and vector mosquito species. RSC Adv 9(41):23752–23763. https://doi.org/10.1039/c9ra02089f

    CAS  Article  Google Scholar 

  18. Bowen GS, Calisher CH (1976) Virological and serological studies of Venezuelan equine encephalomyelitis in humans. J Clin Microbiol 4(1):22–27. https://doi.org/10.1128/jcm.4.1.22-27.1976

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Breaker RR (1997) DNA aptamers and DNA enzymes. Curr Opin Chem Biol 1(1):26–31. https://doi.org/10.1016/s1367-5931(97)80105-6

    CAS  Article  PubMed  Google Scholar 

  20. Bruno JG, Carrillo MP, Richarte AM et al (2012) Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses. BMC Res Notes 5(633):1–12. https://doi.org/10.1186/1756-0500-5-633

    CAS  Article  Google Scholar 

  21. Butcher SE, Pyle AM (2011) The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks. Acc Chem Res 44(12):1302–1311. https://doi.org/10.1021/ar200098t

    CAS  Article  PubMed  Google Scholar 

  22. Calvet G, Aguiar RS, Melo ASO et al (2016) Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. Lancet 16(6):653–660. https://doi.org/10.1016/S1473-3099(16)00095-5

    Article  Google Scholar 

  23. Campbell GL, Hills SL, Fischer M et al (2011) Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89(10):766–774. https://doi.org/10.2471/BLT.10.085233

    Article  PubMed  PubMed Central  Google Scholar 

  24. Carrara A, Gonzales M, Ferro C et al (2005) Venezuelan equine encephalitis virus infection of spiny rats. Emerg Infect Dis 11(5):663–669. https://doi.org/10.3201/eid1105.041251

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carrara A, Coffey LL, Aguilar PV et al (2007) Venezuelan equine encephalitis virus infection of cotton rats. Emerg Infect Dis 13(8):1158–1165. https://doi.org/10.3201/eid1308.061157

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen H, Hsiao W, Lee H et al (2015) Selection and characterization of DNA aptamers targeting all four serotypes of Dengue viruses. PLoS ONE 10(6):1–13. https://doi.org/10.1371/journal.pone.0131240

    CAS  Article  Google Scholar 

  27. Chen Y, Liu L (2012) Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 64(7):640–665. https://doi.org/10.1016/j.addr.2011.11.010

    CAS  Article  PubMed  Google Scholar 

  28. Cheung Y, Kwok J, Law AWL et al (2013) Structural basis for discriminatory recognition of Plasmodium lactate dehydrogenase by a DNA aptamer. Proc Natl Acad Sci USA 110(40):15967–15972. https://doi.org/10.1073/pnas.1309538110

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cheung Y, Röthlisberger P, Mechaly AE et al (2020) Evolution of abiotic cubane chemistries in a nucleic acid aptamer allows selective recognition of a malaria biomarker. Proc Natl Acad Sci U S A 117(29):16790–16798. https://doi.org/10.1073/pnas.2003267117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Chevalier V, Pépin M, Plée L et al (2010) Rift Valley fever: a threat for Europe? Euro Surveill 15(10):19506

    CAS  Article  Google Scholar 

  31. Chiang C, Beljanski V, Yin K et al (2015) Sequence-specific modifications enhance the broad spectrum antiviral response activated by RIG-I agonists. J Virol 89(15):8011–8025. https://doi.org/10.1128/JVI.00845-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Chiu AS, Sankarapani V, Drabek R et al (2018) Inhibition of vitamin C oxidation by DNA aptamers. Aptamers 2:1–20

    Google Scholar 

  33. Citartan M, Kaur H, Presela R et al (2019) Aptamers as the chaperones (Aptachaperones) of drugs-from siRNAs to DNA nanorobots. Int J Pharm 567:1–16. https://doi.org/10.1016/j.ijpharm.2019.118483

    CAS  Article  Google Scholar 

  34. Cnossen EJ, Silva AG, Marangoni K et al (2017) Characterization of oligonucleotide aptamers targeting the 5´-UTR from Dengue virus. Future Med Chem 9(6):541–552. https://doi.org/10.4155/fmc-2016-0233

    CAS  Article  PubMed  Google Scholar 

  35. Cui L, Mharakurwa S, Ndiaye D et al (2015) Antimalarial drug resistance: literature review and activities and findings of the ICEMR network. Am J Trop Med Hyg 93(3):57–68. https://doi.org/10.4269/ajtmh.15-0007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Daubney R, Hudson JR, Garnham PC (1931) Enzootic hepatitis or Rift Valley fever. An undescribed virus disease of sheep cattle and man from East Africa. J Pathol Bacteriol 34(4):545–579. https://doi.org/10.1002/path.1700340418

    Article  Google Scholar 

  37. David PH, Handunnetti SM, Leech JH et al (1988) Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am J Trop Med Hyg 38(2):289–297. https://doi.org/10.4269/ajtmh.1988.38.289

    CAS  Article  PubMed  Google Scholar 

  38. Day JB, Nguyen H, Sharma SK et al (2009) Effect of dehydrated storage on the survival of Francisella tularensis in infant formula. Food Microbiol 26(8):932–935. https://doi.org/10.1016/j.fm.2009.06.005

    CAS  Article  PubMed  Google Scholar 

  39. Deardorff ER, Estrada-Franco JG, Freier JE et al (2011) Candidate vectors and rodent hosts of Venezuelan equine encephalitis virus, Chiapas, 2006–2007. Am J Trop Med Hyg 85(6):1146–1153. https://doi.org/10.4269/ajtmh.2011.11-0094

    Article  PubMed  PubMed Central  Google Scholar 

  40. Deardorff ER, Weaver SC (2010) Vector competence of Culex (Melanoconion) taeniopus for equine-virulent subtype IE strains of Venezuelan equine encephalitis virus. Am J Trop Med Hyg 82(6):1047–1052. https://doi.org/10.4269/ajtmh.2010.09-0556

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dennis DT, Inglesby TV, Henderson DA et al (2001) Tularemia as a biological weapon: medical and public health management. JAMA 285(21):2763–2773. https://doi.org/10.1001/jama.285.21.2763

    CAS  Article  PubMed  Google Scholar 

  42. Desingu PA, Ray PK, John JK et al (2017) First complete genome sequence of genotype III Japanese encephalitis virus isolated from a stillborn piglet in India. Genome Announc 5(3):1503–1516. https://doi.org/10.1128/genomeA.01503-16

    Article  Google Scholar 

  43. Diallo M, Thonnon J, Traore-Lamizana M et al (1999) Vectors of Chikungunya virus in senegal: current data and transmission cycles. Am J Trop Med Hyg 60(2):281–286. https://doi.org/10.4269/ajtmh.1999.60.281

    CAS  Article  PubMed  Google Scholar 

  44. Diamond MS, Pierson TC (2015) Molecular insight into Dengue virus pathogenesis and its implications for disease control. Cell 162(3):488–492. https://doi.org/10.1016/j.cell.2015.07.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Dirkzwager RM, Kinghorn AB, Richards JS et al (2015) APTEC: aptamer-tethered enzyme capture as a novel rapid diagnostic test for malaria. Chem Commun (camb) 51(22):4697–4700. https://doi.org/10.1039/C5CC00438A

    CAS  Article  Google Scholar 

  46. Dolai S, Tabib-Azar M (2019) 433 MHz Lithium Niobate microbalance aptamer-coated whole Zika virus sensor with 370 Hz/ng sensitivity. IEEE Sens J 20(8):1–6. https://doi.org/10.1109/JSEN.2019.2961611

    Article  Google Scholar 

  47. Dolai S, Tabib-Azar M (2020) Whole virus detection using aptamers and paper-based sensor potentiometry. Med Devices Sens. https://doi.org/10.1002/mds3.10112

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dong Y, Yang J, Ye W et al (2015) Isolation of endogenously sssembled RNA-protein complexes using affinity purification based on streptavidin aptamer S1. Int J Mol Sci 16(9):22456–22472. https://doi.org/10.3390/ijms160922456

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Drosten C, Göttig S, Schilling S et al (2002) Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, Dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40(7):2323–2330. https://doi.org/10.1128/JCM.40.7.2323

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Dubot-Pérès A, Sengvilaipaseuth O, Chanthongthip A et al (2015) How many patients with anti-JEV IgM in cerebrospinal fluid really have Japanese encephalitis? Lancet Infect Dis 15(12):1376–1377. https://doi.org/10.1016/S1473-3099(15)00405-3

    Article  PubMed  Google Scholar 

  51. Ellenbecker M, Sears L, Li P et al (2012) Characterization of RNA aptamers directed against the nucleocapsid protein of Rift Valley fever virus. Antiviral Res 93(3):330–339. https://doi.org/10.1016/j.antiviral.2012.01.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Ellenbecker M, Goddard JS, Sundet A et al (2015) Computational prediction and biochemical characterization of novel RNA aptamers to Rift Valley fever virus nucleocapsid protein. Comput Biol Chem 58:120–125. https://doi.org/10.1016/j.compbiolchem.2015.06.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. https://doi.org/10.1038/346818a0

    CAS  Article  PubMed  Google Scholar 

  54. Ellis J, Oyston PCF, Green M et al (2002) Tularemia. Clin Microbiol Rev 15(4):631–646. https://doi.org/10.1128/CMR.15.4.631

    Article  PubMed  PubMed Central  Google Scholar 

  55. Enserink M (2007) Infectious diseases. Chikungunya: no longer a third world disease. Science 318(5858):1860–1861. https://doi.org/10.1126/science.318.5858.1860

    CAS  Article  PubMed  Google Scholar 

  56. Escadafal C, Faye O, Sall AA et al (2014) Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis 8(3):1–8. https://doi.org/10.1371/journal.pntd.0002730

    Article  Google Scholar 

  57. Euler M, Wang Y, Nentwich O et al (2012) Recombinase polymerase amplification assay for rapid detection of Rift Valley fever virus. J Clin Virol 54(4):308–312. https://doi.org/10.1016/j.jcv.2012.05.006

    CAS  Article  PubMed  Google Scholar 

  58. Falk SP, Weisblum B (2014) Aptamer displacement screen for flaviviral RNA methyltransferase inhibitors. J Biomol Screen 19(8):1147–1153. https://doi.org/10.1177/1087057114533147

    CAS  Article  PubMed  Google Scholar 

  59. Ferlin J, Farhat R, Belouzard S et al (2018) Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses. J Gen Virol 99(8):1086–1096. https://doi.org/10.1099/jgv.0.001099

    CAS  Article  PubMed  Google Scholar 

  60. Fletcher SJ, Phillips LW, Milligan AS et al (2010) Toward specific detection of Dengue virus serotypes using a novel modular biosensor. Biosens Bioelectron 26(4):1696–1700. https://doi.org/10.1016/j.bios.2010.07.046

    CAS  Article  PubMed  Google Scholar 

  61. Flick K, Chen Q (2004) var genes, PfEMP1 and the human host. Mol Biochem Parasitol 134(1):3–9. https://doi.org/10.1016/j.molbiopara.2003.09.010

    CAS  Article  PubMed  Google Scholar 

  62. Fontenille D, Diallo M, Mondo M et al (1997) First evidence of natural vertical transmission of yellow fever virus in Aedes aegypti, its epidemic vector. Trans R Soc Trop Med Hyg 91(5):533–535. https://doi.org/10.1016/s0035-9203(97)90013-4

    CAS  Article  PubMed  Google Scholar 

  63. Frith K, Fogel R, Goldring JPD et al (2018) Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting. Malar J 17(1):191. https://doi.org/10.1186/s12936-018-2336-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Fukushi S, Nakauchi M, Mizutani T et al (2012) Antigen-capture ELISA for the detection of Rift Valley fever virus nucleoprotein using new monoclonal antibodies. J Virol Methods 180(1–2):68–74. https://doi.org/10.1016/j.jviromet.2011.12.013

    CAS  Article  PubMed  Google Scholar 

  65. Furuichi Y, Shatkin AJ (2000) Viral and cellular mRNA capping: past and prospects. Adv Virus Res 55:135–184. https://doi.org/10.1016/s0065-3527(00)55003-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Gandham SHA, Volk DE, Rao LGL et al (2014) Thioaptamers targeting Dengue virus type-2 envelope protein domain III. Biochem Biophys Res Commun 453(3):309–315. https://doi.org/10.1016/j.bbrc.2014.09.053

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Garcia S, Crance JM, Billecocq A et al (2001) Quantitative real-time PCR detection of Rift Valley fever virus and its application to evaluation of antiviral compounds. J Clin Microbiol 39(12):4456–4461. https://doi.org/10.1128/JCM.39.12.4456

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Gelinas AD, Davies DR, Janjic N (2016) Embracing proteins: Structural themes in aptamer–protein complexes. Curr Opin Struct Biol 36:122–132. https://doi.org/10.1016/j.sbi.2016.01.009

    CAS  Article  PubMed  Google Scholar 

  69. Glover K, Coombs KM (2020) ZIKV infection induces DNA damage response and alters the proteome of gastrointestinal cells. Viruses 12(7):771. https://doi.org/10.3390/v12070771

    CAS  Article  PubMed Central  Google Scholar 

  70. Glover KKM, Gao A, Zahedi-Amiri A et al (2019) Vero cell proteomic changes induced by Zika virus infection. Proteomics 19(4):1–6. https://doi.org/10.1002/pmic.201800309

    CAS  Article  Google Scholar 

  71. Godonoga M, Ting-Yu L, Oshima A et al (2016) A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly. Sci Rep 6:1–12. https://doi.org/10.1038/srep21266

    CAS  Article  Google Scholar 

  72. Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182. https://doi.org/10.1007/s00216-006-0826-2

    CAS  Article  PubMed  Google Scholar 

  73. Grossman RA, Edelman R, Willhight M et al (1973) Study of Japanese encephalitis virus in Chiang Mai Valley, Thailand III. Human seroepidemiology and inapparent infections. Am J Epidemiol 98(2):133–149. https://doi.org/10.1093/oxfordjournals.aje.a121538

    CAS  Article  PubMed  Google Scholar 

  74. Guo X, Wen F, Zheng N et al (2020) Aptamer-based biosensor for detection of mycotoxins. Front Chem 8(195):1–19. https://doi.org/10.3389/fchem.2020.00195

    CAS  Article  Google Scholar 

  75. Guzman MG, Halstead SB, Artsob H et al (2010) Dengue: a continuing global threat. Nat Rev Microbiol 8(12 Suppl):7–16. https://doi.org/10.1038/nrmicro2460

    CAS  Article  Google Scholar 

  76. Han SR, Lee S (2016) Inhibition of Japanese encephalitis virus (JEV) replication by specific RNA aptamer against JEV methyltransferase. Biochem Biophys Res Commun 483(1):687–693. https://doi.org/10.1016/j.bbrc.2016.12.081

    CAS  Article  PubMed  Google Scholar 

  77. Hendrix DK, Brenner SE, Holbrook SR (2005) RNA structural motifs: building blocks of a modular biomolecule. Q Rev Biophys 38(3):221–243. https://doi.org/10.1017/S0033583506004215

    CAS  Article  PubMed  Google Scholar 

  78. Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825. https://doi.org/10.1126/science.287.5454.820

    CAS  Article  PubMed  Google Scholar 

  79. Hills S, Dabbagh A, Jacobson J et al (2009) Evidence and rationale for the World Health Organization recommended standards for Japanese encephalitis surveillance. BMC Infect Dis 9(214):1–9. https://doi.org/10.1186/1471-2334-9-214

    Article  Google Scholar 

  80. Hoenen T, Groseth A, Falzarano D et al (2006) Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 12(5):206–215. https://doi.org/10.1016/j.molmed.2006.03.006

    CAS  Article  PubMed  Google Scholar 

  81. Hubálek Z (2008) Mosquito-borne viruses in Europe. Parasitol Res 103(1):29–43. https://doi.org/10.1007/s00436-008-1064-7

    Article  Google Scholar 

  82. Imoto J, Ishikawa T, Yamanaka A et al (2010) Needle-free jet injection of small doses of Japanese encephalitis DNA and inactivated vaccine mixture induces neutralizing antibodies in miniature pigs and protects against fetal death and mummification in pregnant sows. Vaccine 28(46):7373–7380. https://doi.org/10.1016/j.vaccine.2010.09.008

    CAS  Article  PubMed  Google Scholar 

  83. Jain P, Das S, Chakma B et al (2016a) Aptamer-graphene oxide for highly sensitive dual electrochemical detection of Plasmodium lactate dehydrogenase. Anal Biochem 514:32–37. https://doi.org/10.1016/j.ab.2016.09.013

    CAS  Article  PubMed  Google Scholar 

  84. Jain P, Chakma B, Singh NK et al (2016b) Aromatic surfactant as aggregating agent for aptamer-gold nanoparticle-based detection of Plasmodium lactate dehydrogenase. Mol Biotechnol 58(7):497–508. https://doi.org/10.1007/s12033-016-9946-x

    CAS  Article  PubMed  Google Scholar 

  85. Jenison RD, Gill SC, Pardi A et al (1994) High-resolution molecular discrimination by RNA. Science 263(5152):1425–1429. https://doi.org/10.1126/science.7510417

    CAS  Article  PubMed  Google Scholar 

  86. Johnson BW, Goodman CH, Jee Y et al (2016) Differential diagnosis of Japanese encephalitis virus infections with the Inbios JE Detect TM and DEN Detect TM MAC-ELISA kits. Am J Trop Med Hyg 94(4):820–828. https://doi.org/10.4269/ajtmh.15-0631

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jorgensen P, Chanthap L, Rebueno A et al (2006) Malaria rapid diagnostic tests in tropical climates: the need for a cool chain. Am J Trop Med Hyg 74(5):750–754

    Article  Google Scholar 

  88. Joseph DF, Nakamoto JA, Ruiz OAG et al (2019) DNA aptamers for the recognition of HMGB1 from Plasmodium falciparum. PLoS ONE 14(4):1–20. https://doi.org/10.1371/journal.pone.0211756

    CAS  Article  Google Scholar 

  89. Jung JI, Han SR, Lee S (2017) Development of RNA aptamer that inhibits methyltransferase activity of Dengue virus. Biotechnol Lett 40(2):315–324. https://doi.org/10.1007/s10529-017-2462-7

    CAS  Article  PubMed  Google Scholar 

  90. Junior BB, Batistuti MR, Pereira AS et al (2021) Electrochemical aptasensor for NS1 detection: towards a fast dengue biosensor. Talanta 233:122527. https://doi.org/10.1016/j.talanta.2021.122527

    CAS  Article  Google Scholar 

  91. Kamarudin NAAN, Sat JNA, Zaidi NFM et al (2020) Evolution of specific RNA aptamers via SELEX targeting recombinant human CD36 protein: a candidate therapeutic target in severe malaria. Asian Pac J Trop Biomed 10(1):23–32. https://doi.org/10.4103/2221-1691.273091

    CAS  Article  Google Scholar 

  92. Kang J, Lee MS, Watowich SJ et al (2007) Combinatorial selection of a RNA thioaptamer that binds to Venezuelan equine encephalitis virus capsid protein. FEBS Lett 581(13):2497–2502. https://doi.org/10.1016/j.febslet.2007.04.072

    CAS  Article  PubMed  Google Scholar 

  93. Kenney JL, Adams AP, Gorchakov R et al (2012) Genetic and anatomic determinants of enzootic Venezuelan equine encephalitis virus infection of Culex (Melanoconion) taeniopus. PLoS Negl Trop Dis 6(4):1–13. https://doi.org/10.1371/journal.pntd.0001606

    Article  Google Scholar 

  94. Khan NI, Maddaus AG, Song E (2018) A low-cost inkjet-printed aptamer-based electrochemical biosensor for the selective detection of lysozyme. Biosensors 8(1):1–18. https://doi.org/10.3390/bios8010007

    CAS  Article  Google Scholar 

  95. Kikuchi N, Reed A, Gerasimova YV et al (2019) Split dapoxyl aptamer for sequence-selective analysis of nucleic acid sequence based amplification amplicons. Anal Chem 91(4):2667–2671. https://doi.org/10.1021/acs.analchem.8b03964

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Kim C, Searson PC (2017) Detection of Plasmodium lactate dehydrogenase ( pLDH ) antigen in buffer using aptamer-modified magnetic microparticles for capture, oligonucleotide-modified quantum dots for detection, and oligonucleotide-modified gold nanoparticles for signal amplification. Bioconjug Chem 28(9):2230–2234. https://doi.org/10.1021/acs.bioconjchem.7b00328

    CAS  Article  PubMed  Google Scholar 

  97. Kim DTH, Bao DT, Park H et al (2018) Development of a novel peptide aptamer-based immunoassay to detect Zika virus in serum and urine. Theranostics 8(13):3629–3642. https://doi.org/10.7150/thno.25955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Kong HY, Byun J (2013) Nucleic acid aptamers: New methods for selection, stabilization, and application in biomedical science. Biomol Ther 21(6):423–434. https://doi.org/10.4062/biomolther.2013.085

    Article  Google Scholar 

  99. Kortekaas J, Kant J, Vloet R et al (2013) European ring trial to evaluate ELISAs for the diagnosis of infection with Rift Valley fever virus. J Virol Methods 187(1):177–181. https://doi.org/10.1016/j.jviromet.2012.09.016

    CAS  Article  PubMed  Google Scholar 

  100. Kruspe S, Mittelberger F, Szameit K et al (2014) Aptamers as drug delivery vehicles. ChemMedChem 9(9):1998–2011. https://doi.org/10.1002/cmdc.201402163

    CAS  Article  PubMed  Google Scholar 

  101. Kumar NP, Joseph R, Kamaraj T et al (2008) A226V mutation in virus during the 2007 Chikungunya outbreak in Kerala, India. J Gen Virol 89:1945–1948. https://doi.org/10.1099/vir.0.83628-0

    CAS  Article  PubMed  Google Scholar 

  102. Kuno G, Chang GJ, Tsuchiya KR et al (1998) Phylogeny of the genus Flavivirus. J Virol 72(1):73–83. https://doi.org/10.1128/JVI.72.1.73-83.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Kwon J, Lee Y, Lee T et al (2020a) Aptamer-based field-effect transistor for detection of avian influenza virus in chicken serum. Anal Chem 92(7):5524–5531. https://doi.org/10.1021/acs.analchem.0c00348

    CAS  Article  PubMed  Google Scholar 

  104. Kwon PS, Ren S, Kwon S et al (2020b) Designer DNA architecture offers precise and multivalent spatial pattern-recognition for viral sensing and inhibition. Nat Chem 12(1):26–35. https://doi.org/10.1038/s41557-019-0369-8

    CAS  Article  PubMed  Google Scholar 

  105. Lakhin AV, Tarantul VZ, Gening LV (2013) Aptamers: Problems, solutions and prospects. Acta Nat 5(4):34–43

    CAS  Article  Google Scholar 

  106. Lamont EA, Wang P, Enomoto S et al (2014) A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS ONE 9(12):1–19. https://doi.org/10.1371/journal.pone.0114622

    CAS  Article  Google Scholar 

  107. Lee KH, Zeng H (2017) Aptamer-based ELISA assay for highly specific and sensitive detection of Zika NS1 protein. Anal Chem 89(23):12743–12748. https://doi.org/10.1021/acs.analchem.7b02862

    CAS  Article  PubMed  Google Scholar 

  108. Lee S, Song K, Jeon W et al (2012) A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosens Bioelectron 35(1):291–296. https://doi.org/10.1016/j.bios.2012.03.003

    CAS  Article  PubMed  Google Scholar 

  109. Li W, Wang S, Zhou L et al (2019) An ssDNA aptamer selected by Cell-SELEX for the targeted imaging of poorly differentiated gastric cancer tissue. Talanta 199:634–642. https://doi.org/10.1016/j.talanta.2019.03.016

    CAS  Article  PubMed  Google Scholar 

  110. Li X, Yang Y, Zhao H et al (2020) Enhanced in vivo blood−brain barrier penetration by circular tau−transferrin receptor bifunctional aptamer for tauopathy therapy. J Am Chem Soc 142(8):3862–3872. https://doi.org/10.1021/jacs.9b11490

    CAS  Article  PubMed  Google Scholar 

  111. Linssen B, Kinney RM, Aguilar P et al (2000) Development of reverse transcription-PCR assays specific for detection of equine encephalitis viruses. J Clin Microbiol 38(4):1527–1535. https://doi.org/10.1128/JCM.38.4.1527-1535.2000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Lu B, Qin Y, Li B et al (2017) Full-length genome sequence of Japanese encephalitis virus strain FC792, isolated from Guangxi. China Genome Announc 5(48):1–2. https://doi.org/10.1128/genomeA.01054-17

    Article  Google Scholar 

  113. Maeda A, Maeda J (2013) Review of diagnostic plaque reduction neutralization tests for flavivirus infection. Vet J 195(1):33–40. https://doi.org/10.1016/j.tvjl.2012.08.019

    Article  PubMed  Google Scholar 

  114. Mairal T, Ozalp VC, Sánchez PL et al (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390(4):989–1007. https://doi.org/10.1007/s00216-007-1346-4

    CAS  Article  PubMed  Google Scholar 

  115. Mandell G, Bennett JE, Dolin R (2005) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. Clin Infect Dis 41:277

    Article  Google Scholar 

  116. Martin SK, Rajasekariah G, Awinda G et al (2009) Unified parasite lactate dehydrogenase and histidine-rich protein ELISA for quantification of Plasmodium falciparum. Am J Trop Med Hyg 80(4):516–522. https://doi.org/10.4269/ajtmh.2009.80.516

    CAS  Article  PubMed  Google Scholar 

  117. Meegan J, Guenno BL, Ksiazek T et al (1989) Rapid diagnosis of Rift Valley fever: a comparison of methods for the direct detection of viral antigen in human sera. Res Virol 140(1):59–65. https://doi.org/10.1016/s0923-2516(89)80085-8

    CAS  Article  PubMed  Google Scholar 

  118. Mencin N, Šmuc T, Vraničar M et al (2014) Optimization of SELEX: Comparison of different methods for monitoring the progress of in vitro selection of aptamers. J Pharm Biomed Anal 91:151–159. https://doi.org/10.1016/j.jpba.2013.12.031

    CAS  Article  PubMed  Google Scholar 

  119. Mok J, Jeon J, Jo J et al (2021) Novel one-shot fluorescent aptasensor for dengue fever diagnosis using NS1-induced structural change of G-quadruplex aptamer. Sens Actuators B 343:130077. https://doi.org/10.1016/j.snb.2021.130077

    CAS  Article  Google Scholar 

  120. Morais LM, Alves LN, Argondizzo APC et al (2018) DNA aptamer as molecular tool for ZIKV NS1 protein detection. AIP Conf Proc 2040(1):1–5. https://doi.org/10.1063/1.5079162

    CAS  Article  Google Scholar 

  121. Morais LM, Argondizzo APC, Silva D et al (2019) Aptamers against the Zika virus NS1 protein, for a serological diagnostic assay development. AIP Conf Proc 2186:1–5. https://doi.org/10.1063/1.5138061

    CAS  Article  Google Scholar 

  122. Morales MA, Fabbri CM, Zunino GE et al (2017) Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis encephalitis, Ilheus, Bussuquara, and yellow fever in free-ranging black howlers (Alouatta caraya) of Northeastern Argentina. PLoS Negl Trop Dis 11(2):1–13. https://doi.org/10.1371/journal.pntd.0005351

    Article  Google Scholar 

  123. Mukhopadhyay S, Kuhn RJ, Rossmann MG (2005) A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3(1):13–22. https://doi.org/10.1038/nrmicro1067

    CAS  Article  PubMed  Google Scholar 

  124. Müller R, Poch O, Delarue M et al (1994) Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases. J Gen Virol 75(6):1345–1352. https://doi.org/10.1099/0022-1317-75-6-1345

    Article  PubMed  Google Scholar 

  125. Murphy FA et al (1995) Virus taxonomy, 6th report of the International Committee on Taxonomy of Viruses. Arch Virol Suppl 10:1–586

    Google Scholar 

  126. Mwaengo D, Lorenzo G, Iglesias J et al (2012) Detection and identification of Rift Valley fever virus in mosquito vectors by quantitative real-time PCR. Virus Res 169(1):137–143. https://doi.org/10.1016/j.virusres.2012.07.019

    CAS  Article  PubMed  Google Scholar 

  127. Myint KSA, Gibbons RV, Perng GC et al (2007) Unravelling the neuropathogenesis of Japanese encephalitis. Trans R Soc Trop Med Hyg 101(10):955–956. https://doi.org/10.1016/j.trstmh.2007.04.004

    CAS  Article  PubMed  Google Scholar 

  128. Nan S, Li F, Nie K et al (2018) TaqMan real-time RT-PCR assay for detecting and differentiating Japanese encephalitis virus. Biomed Environ Sci 31(3):208–214. https://doi.org/10.3967/bes2018.026

    Article  Google Scholar 

  129. Navien TN, Thevendran R, Hamdani HY et al (2021) In silico molecular docking in DNA aptamer development. Biochimie 180:54–67. https://doi.org/10.1016/j.biochi.2020.10.005

    CAS  Article  PubMed  Google Scholar 

  130. Niles JC, Derisi JL, Marletta MA (2009) Inhibiting Plasmodium falciparum growth and heme detoxification pathway using heme-binding DNA aptamers. Proc Natl Acad Sci USA 106(32):13266–13271. https://doi.org/10.1073/pnas.0906370106

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nomura Y, Sugiyama S, Sakamoto T et al (2010) Conformational plasticity of RNA for target recognition as revealed by the 2.15. A structure of a human IgG–aptamer complex. Nucleic Acids Res 38(21):7822–7829. https://doi.org/10.1093/nar/gkq615

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Odeh F, Nsairat H, Aishaer W et al (2020) Aptamers chemistry: chemical modifications and conjugation strategies. Molecules 25(1):1–51. https://doi.org/10.3390/molecules25010003

    CAS  Article  Google Scholar 

  133. Odendaal L, Fosgate GT, Romito M et al (2014) Sensitivity and specificity of real-time reverse transcription polymerase chain reaction, histopathology, and immunohistochemical labeling for the detection of Rift Valley fever virus in naturally infected cattle and sheep. J Vet Diagn Invest 26(1):49–60. https://doi.org/10.1177/1040638713516759

    CAS  Article  PubMed  Google Scholar 

  134. Ortiz DI, Kang W, Weaver SC (2008) Susceptibility of Ae. aegypti (Diptera: Culicidae) to infection with epidemic (subtype IC) and enzootic (subtypes ID, IIIC, IIID) Venezuelan equine encephalitis complex alphaviruses. J Med Entomol 45(6):1117–1125. https://doi.org/10.1603/0022-2585(2008)45[1117:soaadc]2.0.co;2

    Article  PubMed  Google Scholar 

  135. Ospina-villa JD, Cisneros-sarabia A, Sánchez-Jiménez MM et al (2020) Current advances in the development of diagnostic tests based on aptamers in parasitology: a systematic review. Pharmaceutics 12(11):1–21. https://doi.org/10.3390/pharmaceutics12111046

    CAS  Article  Google Scholar 

  136. Oteng EK, Gu W, McKeague M (2020) High-efficiency enrichment enables identification of aptamers to circulating Plasmodium falciparum-infected erythrocytes. Sci Rep 10(1):1–11. https://doi.org/10.1038/s41598-020-66537-1

    CAS  Article  Google Scholar 

  137. Pantawane PB, Dhanze H, Kumar GVPPSR et al (2018) TaqMan real-time RT-PCR assay for detecting Japanese encephalitis virus in swine blood samples and mosquitoes. Anim Biotechnol 30(3):267–272. https://doi.org/10.1080/10495398.2018.1481417

    CAS  Article  PubMed  Google Scholar 

  138. Pearce JC, Learoyd TP, Langendorf BJ et al (2018) Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med 25(1):16–26. https://doi.org/10.1093/jtm/tay009

    Article  Google Scholar 

  139. Pepin M, Bouloy M, Bird BH et al (2010) Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res 41(61):1–40. https://doi.org/10.1051/vetres/2010033

    CAS  Article  Google Scholar 

  140. Pialoux G, Gaüzère B, Jauréguiberry S et al (2007) Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7(5):319–327. https://doi.org/10.1016/S1473-3099(07)70107-X

    Article  PubMed  Google Scholar 

  141. Poloni TR, Oliveira AS, Alfonso HL et al (2010) Detection of dengue virus in saliva and urine by real time RT-PCR. Virol J 7(22):1–4. https://doi.org/10.1186/1743-422X-7-22

    CAS  Article  Google Scholar 

  142. Potisopon S, Priet S, Collet A et al (2014) The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res 42(18):11642–11656. https://doi.org/10.1093/nar/gku666

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. Price JC, Thio CL (2011) Liver disease in the HIV-infected individual. Clin Gastroenterol Hepatol 8(12):1002–1012. https://doi.org/10.1016/j.cgh.2010.08.024.Liver

    Article  Google Scholar 

  144. Raducanu V, Rashid F, Zaher MS et al (2020) A direct fluorescent signal transducer embedded in a DNA aptamer paves the way for versatile metal-ion detection. Sens Actuators B 304:1–11. https://doi.org/10.1016/j.snb.2019.127376

    CAS  Article  Google Scholar 

  145. Rafael ME, Taylor T, Magill A et al (2006) Reducing the burden of childhood malaria in Africa: the role of improved diagnostics. Nature 444(1):39–48. https://doi.org/10.1038/nature05445

    Article  PubMed  Google Scholar 

  146. Rashid M, Zahedi-Amiri A, Glover KKM et al (2020) Zika virus dysregulates human Sertoli cell proteins involved in spermatogenesis with little effect on tight junctions. PLoS Negl Trop Dis 14(6):1–23. https://doi.org/10.1371/journal.pntd.0008335

    CAS  Article  Google Scholar 

  147. Ray D, Shah A, Tilgner M et al (2006) West Nile virus 5’-cap structure is formed by sequential guanine N-7 and ribose 2’-O methylations by nonstructural protein 5. J Virol 80(17):8362–8370. https://doi.org/10.1128/JVI.00814-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. Rezza G, Nicoletti L, Angelini R et al (2007) Infection with Chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370(9602):1840–1846

    CAS  Article  Google Scholar 

  149. Rice CM, Strauss JH (1981) Nucleotide sequence of the 26S mRNA of Sindbis virus and deduced sequence of the encoded virus structural proteins. Proc Natl Acad Sci USA 78(4):2062–2066. https://doi.org/10.1073/pnas.78.4.2062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Robinson JS, Featherstone D, Vasanthapuram R et al (2010) Evaluation of three commercially available Japanese encephalitis virus IgM enzyme-linked immunosorbent assays. Am J Trop Med Hyg 83(5):1146–1155. https://doi.org/10.4269/ajtmh.2010.10-0212

    Article  PubMed  PubMed Central  Google Scholar 

  151. Robinson MC (1955) An epidemic of virus disease in Southern province, Tanganyika territory, in 1952–1953. Trans R Soc Trop Med Hyg 49(1):28–32. https://doi.org/10.1016/0035-9203(55)90080-8

    CAS  Article  PubMed  Google Scholar 

  152. Rotz LD, Khan AS, Lillibridge SR (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8(2):225–230. https://doi.org/10.3201/eid0802.010164

    Article  PubMed  PubMed Central  Google Scholar 

  153. Roux CAL, Kubo T, Grobbelaar AA et al (2009) Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid detection of Rift Valley fever virus in clinical specimens. J Clin Microbiol 47(3):645–651. https://doi.org/10.1128/JCM.01412-08

    CAS  Article  PubMed  Google Scholar 

  154. Ruigrok RWH, Crépin T, Kolakofsky D (2011) Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 14(4):504–510. https://doi.org/10.1016/j.mib.2011.07.011

    CAS  Article  PubMed  Google Scholar 

  155. Sahu SP, Alstad AD, Pedersen DD et al (1994) Diagnosis of eastern equine encephalomyelitis virus infection in horses by immunoglobulin M and G capture enzyme-linked immunosorbent assay. J Vet Diagn Invest 6(1):34–38. https://doi.org/10.1177/104063879400600107

    CAS  Article  PubMed  Google Scholar 

  156. Saiz J, Vázquez-Calvo Á, Blázquez AB et al (2016) Zika virus the latest newcomer. Front Microbiol 7(496):1–19. https://doi.org/10.3389/fmicb.2016.00496

    Article  Google Scholar 

  157. Sall AA, Macondo EA, Sène OK et al (2002) Use of reverse transcriptase PCR in early diagnosis of Rift Valley fever. Clin Diagn Lab Immunol 9(3):713–715. https://doi.org/10.1128/CDLI.9.3.713

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Saraf N, Villegas M, Willenberg BJ et al (2019) Multiplex viral detection platform based on a aptamers-integrated microfluidic channel. ACS Omega 4(1):2234–2240. https://doi.org/10.1021/acsomega.8b03277

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. Saron WAA, Rathore APS, Ting L et al (2018) Flavivirus serocomplex cross-reactive immunity is protective by activating heterologous memory CD4 T cells. Sci Adv 4(7):1–14. https://doi.org/10.1126/sciadv.aar4297

    CAS  Article  Google Scholar 

  160. Sasaki O, Karoji Y, Kuroda A et al (1982) Protection of pigs against mosquito-borne Japanese encephalitis virus by immunization with a live attenuated vaccine. Antiviral Res 2(6):355–360. https://doi.org/10.1016/0166-3542(82)90005-5

    CAS  Article  PubMed  Google Scholar 

  161. Sharma A, Knollmann-Ritschel B (2019) Current understanding of the molecular basis of Venezuelan equine encephalitis virus pathogenesis and vaccine development. Viruses 11(2):1–32. https://doi.org/10.3390/v11020164

    CAS  Article  Google Scholar 

  162. Sher AA, Glover KKM, Coombs KM (2019) Zika Virus infection disrupts astrocytic proteins involved in synapse control and axon guidance. Front Microbiol 10(596):1–20. https://doi.org/10.3389/fmicb.2019.00596

    Article  Google Scholar 

  163. Shigdar S, Macdonald J, O’Connor M et al (2013) Aptamers as theranostic agents: modifications, serum stability and functionalisation. Sensors 13(10):13624–13637. https://doi.org/10.3390/s131013624

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. Shiu SC, Cheung Y, Dirkzwager RM et al (2017) Aptamer-mediated protein molecular recognition driving a DNA tweezer nanomachine. Adv Biosys 1(2):1–6. https://doi.org/10.1002/adbi.201600006

    CAS  Article  Google Scholar 

  165. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics. CA Cancer J Clin 66(1):7–30. https://doi.org/10.3322/caac.21332

    Article  Google Scholar 

  166. Singh NK, Chakma B, Jain P et al (2018) Protein-induced fluorescence enhancement based detection of Plasmodium falciparum glutamate dehydrogenase using carbon dot coupled specific aptamer. ACS Comb Sci 20(6):350–357. https://doi.org/10.1021/acscombsci.8b00021

    CAS  Article  PubMed  Google Scholar 

  167. Smith DR, Adams AP, Kenney JL et al (2008) Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: Infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology 372(1):176–186. https://doi.org/10.1016/j.virol.2007.10.011

    CAS  Article  PubMed  Google Scholar 

  168. Smith DR, Arrigo NC, Leal G et al (2007) Infection and dissemination of Venezuelan equine encephalitis virus in the epidemic mosquito vector, Aedes taeniorhynchus. Am J Trop Med Hyg 77(1):176–187

    Article  Google Scholar 

  169. Solignat M, Gay B, Higgs S et al (2009) Replication cycle of chikungunya: a re-emerging arbovirus. Virology 393(2):183–197. https://doi.org/10.1016/j.virol.2009.07.024

    CAS  Article  PubMed  Google Scholar 

  170. Song C, Chen C, Che X et al (2017) Detection of plant hormone abscisic acid (ABA) using an optical aptamer-based sensor with a microfluidics capillary interface. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, pp 370–373. https://doi.org/10.1109/MEMSYS.2017.7863418

  171. Song K, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12(1):612–631. https://doi.org/10.3390/s120100612

    Article  PubMed  PubMed Central  Google Scholar 

  172. Stoltenburg R, Krafčiková P, Víglaský V et al (2016) G-quadruplex aptamer targeting Protein A and its capability to detect Staphylococcus aureus demonstrated by ELONA. Sci Rep 6:1–12. https://doi.org/10.1038/srep33812

    CAS  Article  Google Scholar 

  173. Strauss EG, Strauss JH (1986) Structure and replication of the alphavirus genome. In: Schlesinger S, Schlesinger MJ (eds) The togaviridae and flaviviridae. The viruses. Springer, Boston, MA, pp 35–90. https://doi.org/10.1007/978-1-4757-0785-4_3

  174. Su C, Tsai M, Lin C et al (2020) Dual aptamer assay for detection of Acinetobacter baumannii on an electromagnetically-driven microfluidic platform. Biosens Bioelectron 159(112148):1–7. https://doi.org/10.1016/j.bios.2020.112148

    CAS  Article  Google Scholar 

  175. Sumiyoshi H, Hoke CH, Trent DW (1992) Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol 66(9):5425–5431. https://doi.org/10.1128/JVI.66.9.5425-5431.1992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. Sun H, Zhu X, Lu PY et al (2014) Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol Ther Nucleic Acids 3(8):1–14. https://doi.org/10.1038/mtna.2014.32

    CAS  Article  Google Scholar 

  177. Suzich JA, Kakach LT, Collett MS (1990) Expression strategy of a Phlebovirus: Biogenesis of proteins from the Rift Valley fever virus M segment. J Virol 64(4):1549–1555. https://doi.org/10.1128/JVI.64.4.1549-1555.1990

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. Swanepoel R, Struthers JK, Erasmus MJ et al (1986) Comparison of techniques for demonstrating antibodies to Rift Valley fever virus. J Hyg Camb 97(2):317–329. https://doi.org/10.1017/s0022172400065414

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. Tandale BV, Khan SA, Kushwaha KP et al (2018) Effectiveness of Japanese encephalitis SA 14–14-2 live attenuated vaccine among Indian children: retrospective 1:4 matched case-control study. J Infect Public Health 11(5):711–719. https://doi.org/10.1016/j.jiph.2018.04.011

    Article  Google Scholar 

  180. Tang MSL, Shiu SC, Godonoga M et al (2018) An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine 14(4):1161–1168. https://doi.org/10.1016/j.nano.2018.01.018

    CAS  Article  PubMed  Google Scholar 

  181. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment : RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. https://doi.org/10.1126/science.2200121

    CAS  Article  PubMed  Google Scholar 

  182. Urdea M, Penny LA, Olmsted SS et al (2006) Requirements for high impact diagnostics in the developing world. Nature 444(1):73–79. https://doi.org/10.1038/nature05448

    Article  PubMed  Google Scholar 

  183. Venter M, Zaayman D, Niekerk SV et al (2014) Macroarray assay for differential diagnosis of meningoencephalitis in southern Africa. J Clin Virol 60(1):50–56. https://doi.org/10.1016/j.jcv.2014.02.001

    CAS  Article  PubMed  Google Scholar 

  184. Vivekananda J, Kiel JL (2006) Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by aptamer-linked immobilized sorbent assay. Lab Invest 86(6):610–618. https://doi.org/10.1038/labinvest.3700417

    CAS  Article  PubMed  Google Scholar 

  185. Wal FJVD, Achterberg RP, Boer SMD et al (2012) Bead-based suspension array for simultaneous detection of antibodies against the Rift Valley fever virus nucleocapsid and Gn glycoprotein. J Virol Methods 183(2):99–105. https://doi.org/10.1016/j.jviromet.2012.03.008

    CAS  Article  PubMed  Google Scholar 

  186. Walton TE Jr, AlwarezBuckwalter ORM et al (1973) Experimental infection of horses with enzootic and epizootic strains of Venezuelan equine encephalomyelitis virus. J Infect Dis 128(3):271–282. https://doi.org/10.1093/infdis/128.3.271

    CAS  Article  PubMed  Google Scholar 

  187. Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448. https://doi.org/10.2147/TCRM.S51168

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wang J, Gao T, Luo Y et al (2019) In vitro selection of a DNA Aptamer by Cell-SELEX as a molecular probe for cervical cancer recognition and imaging. J Mol Evol 87(2–3):72–82. https://doi.org/10.1007/s00239-019-9886-8

    CAS  Article  PubMed  Google Scholar 

  189. Wang T, Gantier MP, Xiang D et al (2015) EpCAM Aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics 5(12):1456–1472. https://doi.org/10.7150/thno.11692

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  190. Wang W, Cheung Y, Dirkzwager RM et al (2016) Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer. Analyst. https://doi.org/10.1039/C6AN02417C

    Article  PubMed  PubMed Central  Google Scholar 

  191. Weidmann M, Sanchez-Seco MP, Sall AA et al (2008) Rapid detection of important human pathogenic Phleboviruses. J Clin Virol 41(2):138–142. https://doi.org/10.1016/j.jcv.2007.10.001

    CAS  Article  PubMed  Google Scholar 

  192. Whitehead SS, Blaney JE, Durbin AP et al (2007) Prospects for a dengue virus vaccine. Nat Rev Microbiol 5(7):518–528. https://doi.org/10.1038/nrmicro1690

    CAS  Article  PubMed  Google Scholar 

  193. Willke A, Meric M, Grunow R et al (2009) An outbreak of oropharyngeal tularaemia linked to natural spring water. J Med Microbiol 58(1):112–116. https://doi.org/10.1099/jmm.0.002279-0

    CAS  Article  PubMed  Google Scholar 

  194. WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control: New edition. World Health Organization. https://apps.who.int/iris/handle/10665/44188

  195. WHO (2020) World malaria report 2020: 20 years of global progress and challenges, Geneva, World Health Organization. https://www.who.int/publications/i/item/9789240015791

  196. Wrist A, Sun W, Summers RM (2020) The theophylline aptamer: 25 years as an important tool in cellular engineering research. ACS Synth Biol 9(4):682–697. https://doi.org/10.1021/acssynbio.9b00475

    CAS  Article  PubMed  Google Scholar 

  197. Ye W, Liu T, Zhang W et al (2019) Marine toxins detection by biosensors based on aptamers. Toxins 12(1):1–22. https://doi.org/10.3390/toxins12010001

    CAS  Article  PubMed Central  Google Scholar 

  198. Zhang W, Yang F, Ou D et al (2019) Prediction, docking study and molecular simulation of 3D DNA aptamers to their targets of endocrine disrupting chemicals. J Biomol Struct Dyn 37(16):4274–4282. https://doi.org/10.1080/07391102.2018.1547222

    CAS  Article  PubMed  Google Scholar 

  199. Zhang Z, Tian Y, Huang P et al (2020) Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta 208:1–8. https://doi.org/10.1016/j.talanta.2019.120342

    CAS  Article  Google Scholar 

  200. Zhou G, Wilson G, Hebbard L et al (2016) Aptamers: a promising chemical antibody for cancer therapy. Oncotarget 7(12):13446–13463

    Article  Google Scholar 

  201. Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16(3):181–202. https://doi.org/10.1038/nrd.2016.199

    CAS  Article  PubMed  Google Scholar 

  202. Zhou Y, Ray D, Zhao Y et al (2007) Structure and function of Flavivirus NS5 methyltransferase. J Virol 81(8):3891–3903. https://doi.org/10.1128/JVI.02704-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  203. Zhu Q, Liu G, Kai M (2015) DNA aptamers in the diagnosis and treatment of human diseases. Molecules 20(12):20979–20997. https://doi.org/10.3390/molecules201219739

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  204. Zmurko J, Neyts J, Dallmeier K (2015) Flaviviral NS4b, chameleon and jack-in-the-box roles in viral replication and pathogenesis, and a molecular target for antiviral intervention. Rev Med Virol 25(4):205–223. https://doi.org/10.1002/rmv.1835

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Citartan M and Tang TH were supported by USM Research University Grant (1001.CIPPT.8011095). Navien TN was supported by USM Fellowship (IPS/Fellowship2019/IPG).

Funding

Citartan M and Tang TH were supported by USM Research University Grant (1001.CIPPT.8011095). Navien TN was supported by USM Fellowship (IPS/Fellowship2019/IPG).

Author information

Affiliations

Authors

Contributions

TNN: Conceptualization, Original Draft Writing, Review and Editing. TSY: Writing. AA: Writing. THT: Review, Editing and Supervision. MC: Conceptualization, Review, Editing and Supervision.

Corresponding authors

Correspondence to Thean-Hock Tang or Marimuthu Citartan.

Ethics declarations

Conflicts of interest

Author’s declared to not have any conflict of interest.

Consent to participate

The authors hereby consent to participate.

Ethical approval

Material submitted is original; all authors are in agreement to have the article published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Navien, T.N., Yeoh, T.S., Anna, A. et al. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 37, 131 (2021). https://doi.org/10.1007/s11274-021-03097-0

Download citation

Keywords

  • Aptamer
  • Mosquito
  • Pathogen
  • Disease
  • SELEX