DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance

Abstract

DNA barcoding has proven to be a versatile tool for plant disease diagnostics in the genomics era. As the mass parallel and next generation sequencing techniques gained importance, the role of specific barcodes came under immense scrutiny. Identification and accurate classification of phytopathogens need a universal approach which has been the main application area of the concept of barcode. The present review entails a detailed description of the present status of barcode application in plant disease diagnostics. A case study on the application of Internal Transcribed Spacer (ITS) as barcode for Aspergillus and Fusarium spp. sheds light on the requirement of other potential candidates as barcodes for accurate identification. The challenges faced while barcoding novel pathogens have also been discussed with a comprehensive outline of integrating more recent technologies like meta-barcoding and genome skimming for detecting plant pathogens.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdelfattah A, Wisniewski M, Droby S, Schena L (2016) Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hortic Res 3(1):1–12. https://doi.org/10.1038/hortres.2016.47

    CAS  Article  Google Scholar 

  2. Abeysinghe S, Abeysinghe PD, Kanatiwela-de Silva C, Udagama P, Warawichanee K, Aljafar N, Kawicha P, Dickinson M (2016) Refinement of the taxonomic structure of 16SrXI and 16SrXIV phytoplasmas of gramineous plants using multilocus sequence typing. Plant Dis 100(10):2001–2010. https://doi.org/10.1094/PDIS-02-16-0244-RE

    CAS  Article  PubMed  Google Scholar 

  3. Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43(10):3324–3341. https://doi.org/10.1039/c3cs60439j

    CAS  Article  PubMed  Google Scholar 

  4. Alkowni R, Alabdallah O, Fadda Z (2019) Molecular identification of tomato brown rugose fruit virus in tomato in Palestine. J Plant Pathol 101(3):719–723. https://doi.org/10.1007/s42161-019-00240-7

    Article  Google Scholar 

  5. Arahal DR, Sánchez E, Macián Rovira MC, Garay Auban E (2008) Value of recN sequences for species identification and as a phylogenetic marker within the family “Leuconostocaceae.” Int Microbiol 11(1):33–39. https://doi.org/10.2436/20.1501.01.42

    CAS  Article  PubMed  Google Scholar 

  6. Avó AP, Daniell TJ, Neilson R et al (2017) DNA barcoding and morphological identification of benthic nematodes assemblages of estuarine intertidal sediments: Advances in molecular tools for biodiversity assessment. Mar. Sci, Front. https://doi.org/10.3389/fmars.2017.00066

    Google Scholar 

  7. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555

  8. Balajee SA, Borman AM, Brandt ME, Cano J, Cuenca-Estrella M, Dannaoui E, Guarro J, Haase G, Kibbler CC, Meyer W, O’donnell K, Petti CA, Rodriguez-Tudela JL, Sutton D, Velegraki A, Wickes BL, (2009) Sequence-based identification of Aspergillus, Fusarium, and Mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol 47(4):877–884. https://doi.org/10.1128/JCM.01685-08

    CAS  Article  PubMed  Google Scholar 

  9. Banchi E, Ametrano CG, Stanković D, Verardo P, Moretti O, Gabrielli F, Lazzarin S, Borney MF, Tassan F, Tretiach M, Pallavicini A, Muggia L (2018) DNA metabarcoding uncovers fungal diversity of mixed airborne samples in Italy. PLoS ONE 13(3):e0194489. https://doi.org/10.1371/journal.pone.0194489

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Becker S, Hanner R, Steinke D (2011) Five years of FISH-BOL: Brief status report. Mitochondrial DNA 22(sup1):3–9. https://doi.org/10.3109/19401736.2010.535528

    CAS  Article  PubMed  Google Scholar 

  11. Bella P, Moretti C, Licciardello G, Strano CP, Pulvirenti A, Alaimo S, Zaccardelli M, Branca F, Buonaurio R, Vicente JG, Catara V (2019) Multilocus sequence typing analysis of Italian Xanthomonas campestris pv. campestris strains suggests the evolution of local endemic populations of the pathogen and does not correlate with race distribution. Plant Pathol 68(2):278–287. https://doi.org/10.1111/ppa.12946

  12. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol 10(1):189. https://doi.org/10.1186/1471-2180-10-189

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Besnard G, Christin PA, Malé PJG, Lhuillier E, Lauzeral C, Coissac E, Vorontsova MS (2014) From museums to genomics: Old herbarium specimens shed light on a C3 to C4 transition. J Exp Bot 65(22):6711–6721. https://doi.org/10.1093/jxb/eru395

    CAS  Article  PubMed  Google Scholar 

  14. Bokulich NA, Mills DA (2013) Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ Microbiol 79:2519–2526. https://doi.org/10.1128/AEM.03870-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14(6):224–228. https://doi.org/10.1016/S0169-5347(98)01583-3

    CAS  Article  PubMed  Google Scholar 

  16. Bottrill MC, Joseph LN, Carwardine J, Bode M, Cook C, Game ET, Grantham H, Kark S, Linke S, McDonald-Madden E, Pressey RL, Walker S, Wilson KA, Possingham HP (2008) Is conservation triage just smart decision making? Trends Ecol Evol 23(12):649–654. https://doi.org/10.1016/j.tree.2008.07.007

    Article  PubMed  Google Scholar 

  17. Boutigny AL, Gautier A, Basler R, Dauthieux F, Leite S, Valade R, Aguayo J, Ioos R, Laval V (2019) Metabarcoding targeting the EF1 alpha region to assess Fusarium diversity on cereals. PLoS ONE 14(1):e0207988. https://doi.org/10.1371/journal.pone.0207988

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Buhay JE (2009) “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustac Biol 29(1):96–110. https://doi.org/10.1651/08-3020.1

    Article  Google Scholar 

  19. Bulman SR, McDougal RL, Hill K, Lear G (2018) Opportunities and limitations for DNA metabarcoding in Australasian plant-pathogen biosecurity. Australas Plant Pathol 47(5):467–474. https://doi.org/10.1007/s13313-018-0579-3

    CAS  Article  Google Scholar 

  20. Buyck B, Zoller S, Hofstetter V (2018) Walking the thin line… ten years later: the dilemma of above- versus below-ground features to support phylogenies in the Russulaceae (Basidiomycota). Fungal Divers 89(1):267–292. https://doi.org/10.1007/s13225-018-0397-5

    Article  Google Scholar 

  21. Chaban B, Hill JE (2012) A ‘universal’type II chaperonin PCR detection system for the investigation of Archaea in complex microbial communities. ISME J 6(2):430–439. https://doi.org/10.1038/ismej.2011.96

    CAS  Article  PubMed  Google Scholar 

  22. Chalupowicz L, Dombrovsky A, Gaba V, Luria N, Reuven M, Beerman A, Lachman O, Dror O, Nissan G, Manulis-Sasson S (2019) Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol 68(2):229–238. https://doi.org/10.1111/ppa.12957

    CAS  Article  Google Scholar 

  23. Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V (2005) Land plants and DNA barcodes: Short-term and long-term goals. Philos Trans R Soc B 360(1462):1889–1895. https://doi.org/10.1098/rstb.2005.1720

  24. Choudhary P, Rai P, Yadav J (2020) A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1 IA causing sheath blight of rice. Sci Rep 10(1):1–19. https://doi.org/10.1038/s41598-020-79117-0

    CAS  Article  Google Scholar 

  25. Cobo-Díaz JF, Baroncelli R, Le Floch G, Picot A (2019) Combined metabarcoding and co-occurrence network analysis to profile the bacterial, fungal and Fusarium communities and their interactions in maize stalks. Front Microbiol 10:261. https://doi.org/10.3389/fmicb.2019.00261

    Article  PubMed  PubMed Central  Google Scholar 

  26. Colabella C, Corte L, Roscini L, Bassetti M, Tascini C, Mellor JC, Meyer W, Robert V, Vu D, Cardinali G (2018) NGS barcode sequencing in taxonomy and diagnostics, an application in “Candida” pathogenic yeasts with a metagenomic perspective. IMA Fungus 9(1):91–105. https://doi.org/10.5598/imafungus.2018.09.01.07

    Article  PubMed  PubMed Central  Google Scholar 

  27. Colabella C, Corte L, Roscini L, Shapaval V, Kohler A, Tafintseva V, Tascini C, Cardinali G (2017) Merging FT-IR and NGS for simultaneous phenotypic and genotypic identification of pathogenic Candida species. PLoS ONE 12(12):e0188104. https://doi.org/10.1371/journal.pone.0188104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Croce V, Pianzzola MJ, Durand K, González-Arcos M, Jacques MA, Siri MI (2016) Multilocus Sequence Typing reveals high variability among Clavibacter michiganensis subsp. michiganensis strains affecting tomato crops in Uruguay. Eur J Plant Pathol 144(1):1–13. https://doi.org/10.1007/s10658-015-0738-0

  29. Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99(16):10494–10499. https://doi.org/10.1073/pnas.142680199

    CAS  Article  PubMed  Google Scholar 

  30. Daru BH, Bowman EA, Pfister DH, Arnold AE (2019) A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philos Trans R Soc B 374(1763): 20170395. https://doi.org/10.1098/rstb.2017.0395

  31. Delgado-Serrano L, Restrepo S, Bustos JR, Zambrano MM, Anzola JM (2016) Mycofier: A new machine learning-based classifier for fungal ITS sequences. BMC Res Notes 9(1):1–8. https://doi.org/10.1186/s13104-016-2203-3

    Article  Google Scholar 

  32. De Queiroz K (2007) Species concepts and species delimitation. Syst Biol 56(6):879–886. https://doi.org/10.1080/10635150701701083

    Article  PubMed  Google Scholar 

  33. DeSalle R (2007) Phenetic and DNA taxonomy; a comment on Waugh. BioEssays. https://doi.org/10.1002/bies.20667

    Article  PubMed  Google Scholar 

  34. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc B 360(1462): 1905–1916. https://doi.org/10.1098/rstb.2005.1722

  35. Dodsworth S (2015) Genome skimming for next-generation biodiversity analysis. Trends Plant Sci 20(9):525–527. https://doi.org/10.1016/j.tplants.2015.06.012

    CAS  Article  PubMed  Google Scholar 

  36. Dormontt EE, van Dijk KJ, Bell KL, Biffin E, Breed MF, Byrne M, Caddy-Retalic S, Encinas-Viso F, Nevill PG, Shapcott A, Young JM, Waycott M, Lowe AJ (2018) Advancing DNA barcoding and metabarcoding applications for plants requires systematic analysis of herbarium collections-an Australian perspective. Front Ecol Evol 6:134. https://doi.org/10.3389/fevo.2018.00134

    Article  Google Scholar 

  37. Enan MR, Palakkott AR, Ksiksi TS (2017) DNA barcoding of selected UAE medicinal plant species: a comparative assessment of herbarium and fresh samples. Physiol Mol Biol Plants 23(1):221–227. https://doi.org/10.1007/s12298-016-0412-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. EPPO (2015) EPPO A1 AND A2 lists of pests recommended for regulation as quarantine pests.

  39. Fahner NA, Shokralla S, Baird DJ, Hajibabaei M (2016) Large-scale monitoring of plants through environmental DNA metabarcoding of soil: recovery, resolution, and annotation of four DNA markers. PLoS ONE 11(6):e0157505. https://doi.org/10.1371/journal.pone.0157505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Felsenstein J, (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (NY). 39:783–791. Doi: https://doi.org/10.2307/2408678

  41. Gao R, Zhang G (2013) Potential of DNA barcoding for detecting quarantine fungi. Phytopathology 103(11):1103–1107. https://doi.org/10.1094/PHYTO-12-12-0321-R

    CAS  Article  PubMed  Google Scholar 

  42. Geiser DM, Jiménez-Gasco MDM, Kang S, Makalowska I, Veeraraghavan N, Ward TJ, Zhang N, Kuldau GA, O’Donnell K (2004) FUSARIUM-ID v. 1.0: A DNA sequence database for identifying Fusarium. Eur J Plant Pathol 110(5–6): 473–479. https://doi.org/10.1023/B:EJPP.0000032386.75915.a0

  43. Grünwald NJ, LeBoldus JM, Hamelin RC (2019) Ecology and evolution of the sudden oak death pathogen Phytophthora ramorum. Annu Rev Phytopathol 57:301–321. https://doi.org/10.1146/annurev-phyto-082718-100117

    CAS  Article  PubMed  Google Scholar 

  44. Harrison J, Calder WJ, Shuman BN, Buerkle CA (2020) The quest for absolute abundance: the use of internal standards for DNA-barcoding in microbial ecology.

  45. Handayani ND, Esquibet M, Montarry J et al (2020) Distribution, DNA barcoding and genetic diversity of potato cyst nematodes in Indonesia. Eur J Plant Pathol 158(2):363–380

    CAS  Article  Google Scholar 

  46. Hsieh CW, Chuang YY, Lee MZ, Kirschner R (2020) First Inventory of fungi in symptomless and symptomatic Chinese Mesona indicates phytopathological threat. Plant Dis 104(9):2391–2397. https://doi.org/10.1094/PDIS-03-20-0475-RE

    CAS  Article  PubMed  Google Scholar 

  47. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270(1512):313–321. https://doi.org/10.1098/rspb.2002.2218

    CAS  Article  PubMed  Google Scholar 

  48. Hebert PDN, Ratnasingham S, de Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc B 270(suppl_1):S96-S99. https://doi.org/10.1098/rsbl.2003.0025

  49. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2(10):e312. https://doi.org/10.1371/journal.pbio.0020312

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Henikoff S (1995) Detecting dinosaur DNA. Science 268(5214):1191–1194. https://doi.org/10.1126/science.7761841

    Article  Google Scholar 

  51. Hoang MTV, Irinyi L, Chen SC et al (2019) Dual DNA barcoding for the molecular identification of the agents of invasive fungal infections. Front Microbiol 10:1647. https://doi.org/10.3389/fmicb.2019.01647

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hollingsworth ML, Andra Clark A, Forrest LL, Richardson J, Pennington RT, Long DG, Cowan R, Chase MW, Gaudeul M, Hollingsworth PM (2009a) Selecting barcoding loci for plants: Evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. Mol Ecol Resour 9(2):439–457. https://doi.org/10.1111/j.1755-0998.2008.02439.x

    CAS  Article  PubMed  Google Scholar 

  53. Hollingsworth PM, Forrest LL, Spouge JL et al (2009b) A DNA barcode for land plants. Proc Natl Acad Sci USA 106(31):12794–12797. https://doi.org/10.1073/pnas.0905845106

    Article  Google Scholar 

  54. Hollingsworth PM (2011) Refining the DNA barcode for land plants. Proc Natl Acad Sci USA 108(49):19451–19452. https://doi.org/10.1073/pnas.1116812108

    Article  PubMed  Google Scholar 

  55. Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6(5):e19254. https://doi.org/10.1371/journal.pone.0019254

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Hong SB, Shin HD, Hong J, Frisvad JC, Nielsen PV, Varga J, Samson RA (2008) New taxa of Neosartorya and Aspergillus in Aspergillus section Fumigati. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 93(1–2): 87–98. Doi: https://doi.org/10.1007/s10482-007-9183-1

  57. Hoshino T, Inagaki F (2017) Correction: Application of stochastic labeling with random-sequence barcodes for simultaneous quantification and sequencing of environmental 16S rRNA genes. PLoS ONE 12(1):e0169431. https://doi.org/10.1371/journal.pone.0173546

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu Y, Green G, Milgate A, Stone E, Rathjen J, Schwessinger B (2018) Pathogen detection and microbiome analysis of infected wheat using a portable DNA sequencer. Phytobiomes J 3(2):92–101. https://doi.org/10.1094/PBIOMES-01-19-0004-R

    Article  Google Scholar 

  59. Hugenholtz P, Goebel BM, Pace NR (1998) Erratum: Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774. https://doi.org/10.1128/JB.180.18.4765-4774.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Ide T, Kanzaki N, Giraldo PPP, Giblin-Davis RM (2017) Loop-mediated isothermal amplification (LAMP) for detection of the red ring nematode, Bursaphelenchus cocophilus. Nematology 19:559–565. https://doi.org/10.1163/15685411-00003069

    Article  Google Scholar 

  61. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, Cardinali G, Arthur I, Normand AC, Giraldo A (2015) International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 53:313–337. https://doi.org/10.1093/mmy/myv008

    CAS  Article  PubMed  Google Scholar 

  62. Jeske H (2018) Barcoding of plant viruses with circular single-stranded DNA based on rolling circle amplification. Viruses 10:469. https://doi.org/10.3390/v10090469

    CAS  Article  PubMed Central  Google Scholar 

  63. Johnston PR, Quijada L, Smith CA, Baral HO, Hosoya T, Baschien C, Pärtel K, Zhuang WY, Haelewaters D, Park D, Carl S, López-Giráldez F, Wang Z, Townsend JP (2019) A multigene phylogeny toward a new phylogenetic classification of Leotiomycetes. IMA Fungus 1:1. https://doi.org/10.1186/s43008-019-0002-x

    Article  Google Scholar 

  64. Kang J, Kim AY, Han H et al (2015) Development of two alternative Loopmediated isothermal amplification tools for detecting pathogenic pine wood nematodes. Forest Pathol 45:127–133. https://doi.org/10.1111/efp.12147

    Article  Google Scholar 

  65. Karsch-Mizrachi I, Takagi T, Cochrane G (2018) The international nucleotide sequence database collaboration. Nucleic Acids Res 44(D1):D48–D50. https://doi.org/10.1093/nar/gkx1097

    CAS  Article  Google Scholar 

  66. Kashyap PL, Rai P, Kumar S, Chakdar H, Srivastava AK (2017) DNA barcoding for diagnosis and monitoring of fungal plant pathogens. In: Molecular markers in mycology. Springer, Cham, pp 87–122. https://doi.org/10.1007/978-3-319-34106-4_5

  67. Kaspřák D, Kerr P, Sýkora V, Tóthová A, Ševčík J (2019) Molecular phylogeny of the fungus gnat subfamilies Gnoristinae and Mycomyinae, and their position within Mycetophilidae (Diptera). Syst Entomol 44(1):128–138

  68. Kidd SE, Chen SCA, Meyer W, Halliday CL (2020) A new age in molecular diagnostics for invasive fungal disease: are we ready? Front Microbiol 10:2903. https://doi.org/10.3389/fmicb.2019.02903

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kiss L (2012) Limits of nuclear ribosomal DNA internal transcribed spacer (ITS) sequences as species barcodes for Fungi. Proc Natl Acad Sci 109(27):E1811–E1811. https://doi.org/10.1073/pnas.1207143109

    Article  PubMed  Google Scholar 

  70. Kõljalg U, Nilsson RH, Abarenkov K (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22(21):5271–5277. https://doi.org/10.1111/mec.12481

    CAS  Article  Google Scholar 

  71. Konwarh R and Sharma PL (2020) Nanosensor platforms for surveillance of plant pathogens and phytometabolites/analytes vis-à-vis plant health status, In: Nanomaterials for Agriculture and Forestry Applications. Elsevier, pp 357–385. https://doi.org/10.1016/B978-0-12-817852-2.00014-7

  72. Kress WJ, Erickson DL (2008) DNA barcodes: Genes, genomics, and bioinformatics. Proc Natl Acad Sci USA 105(8):2761–2762. https://doi.org/10.1073/pnas.0800476105

    Article  PubMed  Google Scholar 

  73. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  PubMed  Google Scholar 

  74. Kulik T, Bilska K, Żelechowski M (2020) Promising perspectives for detection, identification, and quantification of plant pathogenic fungi and oomycetes through targeting mitochondrial DNA. Int J Mol Sci 21(7):2645. https://doi.org/10.3390/ijms21072645

    CAS  Article  PubMed Central  Google Scholar 

  75. Lang D, Tang M, Hu J, Zhou X (2019) Genome-skimming provides accurate quantification for pollen mixtures. Mol Ecol Resour 19(6):1433–1446. https://doi.org/10.1111/1755-0998.13061

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Lasa AV, Fernández-González AJ, Villadas PJ, Toro N, Fernández-López M (2019) Metabarcoding reveals that rhizospheric microbiota of Quercus pyrenaica is composed by a relatively small number of bacterial taxa highly abundant. Sci Rep 9(1):1–13. https://doi.org/10.1038/s41598-018-38123-z

    CAS  Article  Google Scholar 

  77. Laura AH, Jérôme M, Axel H, Lars H, Stefan S, Dieter D, Jörg M, Hebert PDN, Gerhard HND (2020) DNA metabarcoding for biodiversity monitoring in a national park: screening for invasive and pest species. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13212

  78. Leal I, Bergeron MJ, Feau N, Tsui CKM, Foord B, Pellow K, Hamelin RC, Sturrock RN (2019) Cryptic speciation in western North America and Eastern Eurasia of the pathogens responsible for laminated root rot. Phytopathology. https://doi.org/10.1094/PHYTO-12-17-0399-R

    Article  PubMed  Google Scholar 

  79. Lebonah DE, Dileep A, Chandrasekhar K, Sreevani S, Sreedevi B, Pramoda Kumari J (2014) DNA barcoding on bacteria: a review. Adv Biol. https://doi.org/10.1155/2014/541787

    Article  Google Scholar 

  80. Li Z, Paul R, Ba Tis T, Saville AC, Hansel JC, Yu T, Ristaino JB, Wei Q (2019) Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat Plants 5(8):856–866. https://doi.org/10.1038/s41477-019-0476-y

    CAS  Article  PubMed  Google Scholar 

  81. Liu D, Liu L, Guo G, Wang W, Sun Q, Parani M, Ma J (2013) BOLD Mirror: a global mirror system of DNA barcode data. Mol Ecol Resour 13(6):991–995. https://doi.org/10.1111/1755-0998.12048

    CAS  Article  PubMed  Google Scholar 

  82. Luchi N, Ioos R, Santini A (2020) Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl Microbiol Biotechnol 104(6):2453–2468. https://doi.org/10.1007/s00253-020-10395-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M (2012) DNA Barcoding for Identification of “Candidatus Phytoplasmas” using a fragment of the Elongation Factor Tu Gene. PLoS ONE 7(12):e52092. https://doi.org/10.1371/journal.pone.0052092

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G, Strano CP, Palmeri V (2017) A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol 73(3):677–684. https://doi.org/10.1007/s00248-016-0864-z

    CAS  Article  PubMed  Google Scholar 

  85. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4(2):102–112. https://doi.org/10.1038/nrmicro1341

    CAS  Article  PubMed  Google Scholar 

  86. Meng F, Wang X, Wang L et al (2018) A loopmediated isothermal amplification based method for detecting Bursaphelenchus xylophilus from Monochamus alternatus. Forest Pathol 48:e12404. https://doi.org/10.1111/efp.12404

    Article  Google Scholar 

  87. Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst Biol 57(5):809–813. https://doi.org/10.1080/10635150802406343

    Article  PubMed  Google Scholar 

  88. Mikheyev AS, Tin MMY (2014) A first look at the Oxford Nanopore MinION sequencer. Mol Ecol Resour 14(6):1097–1102. https://doi.org/10.1111/1755-0998.12324

    CAS  Article  PubMed  Google Scholar 

  89. Moffat AS (1999) Geminiviruses emerge as serious crop threat. Science 286(5446):1835–1835. https://doi.org/10.1126/science.286.5446.1835

    CAS  Article  Google Scholar 

  90. Morales-Cruz A, Figueroa-Balderas R, García JF, Tran E, Rolshausen PE, Baumgartner K, Cantu D (2018) Profiling grapevine trunk pathogens in planta: a case for community-targeted DNA metabarcoding. BMC Microbiol 18(1):1–14. https://doi.org/10.1186/s12866-018-1343-0

    CAS  Article  Google Scholar 

  91. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L, Knight R (2011) Global patterns in the biogeography of bacterial taxa. Environ Microbiol 13(1):135–144. https://doi.org/10.1111/j.1462-2920.2010.02315.x

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nevill PG, Zhong X, Tonti-Filippini J, Byrne M, Hislop M, Thiele K, Van Leeuwen S, Boykin LM, Small I (2020) Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. Plant Methods 16(1):1–8. https://doi.org/10.1186/s13007-019-0534-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Nilsen AR, Wang XY, Soop K, Cooper JA, Ridley GS, Wallace M, Summerfield TC, Brown CM, Orlovich DA (2020) Purple haze: Cryptic purple sequestrate Cortinarius in New Zealand. Mycologia. https://doi.org/10.1080/00275514.2020.1730120

    Article  PubMed  Google Scholar 

  94. O’Donnell K, Ward TJ, Robert VARG, Crous PW, Geiser DM, Kang S (2015) DNA sequence-based identification of Fusarium: current status and future directions. Phytoparasitica 43(5):583–595. https://doi.org/10.1007/s12600-015-0484-z

    Article  Google Scholar 

  95. Ogier JC, Pagès S, Galan M et al (2019) rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 19(1):1–16. https://doi.org/10.1186/s12866-019-1546-z

    CAS  Article  Google Scholar 

  96. Okubara PA, Schroeder KL, Paulitz TC (2008) Identification and quantification of Rhizoctonia solani and R. oryzae using real-time polymerase chain reaction. Phytopathology 98(7):837–847

  97. Ortega SF, Tomlinson J, Hodgetts J, Spadaro D, Gullino ML, Boonham N (2018) Development of loop-mediated isothermal amplification assays for the detection of seedborne fungal pathogens Fusarium fujikuroi and Magnaporthe oryzae in Rice Seed. Plant Dis 102(8):1549–1558. https://doi.org/10.1094/PDIS-08-17-1307-RE

    CAS  Article  PubMed  Google Scholar 

  98. Osdaghi E, Taghavi SM, Koebnik R, Lamichhane JR (2018) Multilocus sequence analysis reveals a novel phylogroup of Xanthomonas euvesicatoria pv. perforans causing bacterial spot of tomato in Iran. Plant Pathol 67(7):1601–1611. https://doi.org/10.1111/ppa.12864

    CAS  Article  Google Scholar 

  99. Osmundson TW, Robert VA, Schoch CL, Baker LJ, Smith A, Robich G, Mizzan L, Garbelotto MM (2013) Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project. PLoS ONE 8(4):e62419. https://doi.org/10.1371/journal.pone.0062419

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14(7):434–447. https://doi.org/10.1038/nrmicro.2016.59

    CAS  Article  PubMed  Google Scholar 

  101. Prakash PY, Irinyi L, Halliday C, Chen S, Robert V, Meyer W (2017) Online databases for taxonomy and identification of pathogenic fungi and proposal for a cloud-based dynamic data network platform. J Clin Microbiol 55(4):1011–1024. https://doi.org/10.1128/JCM.02084-16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Prigigallo MI, Abdelfattah A, Cacciola SO, Faedda R, Sanzani SM, Cooke DEL, Schena L (2016) Metabarcoding analysis of Phytophthora diversity using genus-specific primers and 454 pyrosequencing. Phytopathology 106(3):305–313. https://doi.org/10.1094/PHYTO-07-15-0167-R

    CAS  Article  PubMed  Google Scholar 

  103. Ragupathy S, Newmaster SG, Murugesan M, Balasubramaniam V (2009) DNA barcoding discriminates a new cryptic grass species revealed in an ethnobotany study by the hill tribes of the Western Ghats in southern India. Mol Ecol Resour 9:164–171. https://doi.org/10.1111/j.1755-0998.2009.02641.x

    CAS  Article  PubMed  Google Scholar 

  104. Rieseberg LH, Wood TE, Baack EJ (2006) The nature of plant species. Nature 440(7083):524–527. https://doi.org/10.1038/nature04402

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Robideau GP, De Cock AWAM, Coffey MD et al (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11(6):1002–1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Robinson E, Blagoev G, Hebert P, Adamowicz S (2009) Prospects for using DNA barcoding to identify spiders in species-rich genera. Zookeys 16:27. https://doi.org/10.3897/zookeys.16.239

    Article  Google Scholar 

  107. Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH (2010) Multilocus species identification and fungal DNA barcoding: Insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 10(6):946–959. https://doi.org/10.1111/j.1755-0998.2010.02844.x

    CAS  Article  PubMed  Google Scholar 

  108. Roossinck MJ (2011) The big unknown: plant virus biodiversity. Curr Opin Virol 1(1):63–67. https://doi.org/10.1016/j.coviro.2011.05.022

    Article  PubMed  Google Scholar 

  109. Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033. https://doi.org/10.1111/j.1523-1739.2006.00372.x

    Article  PubMed  Google Scholar 

  110. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  111. Samson RA (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Samson RA, Seifert KA, Kuijpers AFA, Houbraken JAMP, Frisvad JC (2004) Phylogenetic analysis of Penicillium subgenus Penicillium using partial β-tubulin sequences. Stud Mycol 49(1):175–200. https://doi.org/10.1021/la053000r

    CAS  Article  Google Scholar 

  113. Sánchez-Monge A, Janssen T, Fang Y et al (2017) mtCOI successfully diagnoses the four main plant-parasitic Aphelenchoides species (Nematoda: Aphelenchoididae) and supports a multiple origin of plant-parasitism in this paraphyletic genus. Eur J of Plant Pathol 148(4):853–866. https://doi.org/10.1007/s10658-016-1141-1

    CAS  Article  Google Scholar 

  114. Schaad NW, Frederick RD (2002) Real-time PCR and its application for rapid plant disease diagnostics. Can J Plant Pathol 24(3):250–258

  115. Schneider KL, Marrero G, Alvarez AM, Presting GG (2011) Classification of plant associated bacteria using RIF, a computationally derived DNA marker. PLoS ONE 6(4):e18496. https://doi.org/10.1371/journal.pone.0018496

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Schoch CL, Robbertse B, Robert V et al (2014) Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database. https://doi.org/10.1093/database/bau061

    Article  PubMed  PubMed Central  Google Scholar 

  117. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, André Levesque C, Chen WF, Daniel JH & Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proced Natl Acad Sci USA 109(16):6241–6246. https://doi.org/10.1073/pnas.1117018109

  118. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Resour 9:83–89. https://doi.org/10.1111/j.1755-0998.2009.02635.x

    CAS  Article  PubMed  Google Scholar 

  119. Seifert KA, Samson RA, DeWaard JR, Houbraken J, Lévesque CA, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104(10):3901–3906. https://doi.org/10.1073/pnas.0611691104

    CAS  Article  PubMed  Google Scholar 

  120. Shahraki AH, Chaganti SR, Heath D (2019) Assessing high-throughput environmental DNA extraction methods for meta-barcode characterization of aquatic microbial communities. J Water Health 17(1):37–49. https://doi.org/10.2166/wh.2018.108

    Article  PubMed  Google Scholar 

  121. Soltis DE, Soltis PS, Schemske DW, Hancock JF, Thompson JN, Husband BC, Judd WS (2007) Autopolyploidy in angiosperms: Have we grossly underestimated the number of species? Taxon 56(1):13–30. https://doi.org/10.2307/25065732

    Article  Google Scholar 

  122. Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96(6):1177–1189. https://doi.org/10.3732/ajb.0800246

    CAS  Article  PubMed  Google Scholar 

  123. Spring O, Bachofer M, Thines M, Riethmüller A, Göker M, Oberwinkler F (2006) Intraspecific relationship of Plasmopara halstedii isolates differing in pathogenicity and geographic origin based on ITS sequence data. Eur J Plant Pathol 114(3):309–315. https://doi.org/10.1007/s10658-005-5996-9

    Article  Google Scholar 

  124. Steenkamp ET, Wingfield BD, Coutinho TA, Wingfield MJ, Marasas WFO (1999) Differentiation of Fusarium subglutinans f. sp. pini by histone gene sequence data. Appl Environ. Microbiol 65(8): 3401–3406. https://doi.org/10.1086/501484

  125. Stielow JB, Lévesque CA, Seifert KA et al (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia Mol Phylogeny Evol Fungi 35:242. https://doi.org/10.3767/003158515X689135

    CAS  Article  Google Scholar 

  126. Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187(2):461–474. https://doi.org/10.1111/j.1469-8137.2010.03262.x

    CAS  Article  PubMed  Google Scholar 

  127. Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A (2012) Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. Am J Bot 99(2):349–364. https://doi.org/10.3732/ajb.1100335

    CAS  Article  PubMed  Google Scholar 

  128. Sujaya IN, Antara NS, Sone T, Tamura Y, Aryanta WR, Yokota A, Asano K, Tomita F (2004) Identification and characterization of yeasts in brem, a traditional Balinese rice wine. World J Microbiol Biotechnol 20(2):143–150. https://doi.org/10.1023/B:WIBI.0000021727.69508.19

    CAS  Article  Google Scholar 

  129. Taylor HR, Harris WE (2012) An emergent science on the brink of irrelevance: a review of the past 8years of DNA barcoding. Mol Ecol Resour 12(3):377–388. https://doi.org/10.1111/j.1755-0998.2012.03119.x

    CAS  Article  PubMed  Google Scholar 

  130. Thorsten-Lumbsch H, Leavitt SD (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Divers 50(1):59. https://doi.org/10.1007/s13225-011-0123-z

    Article  Google Scholar 

  131. Tremblay ÉD, Duceppe M, Thurston GB, Gagnon M, Côté M, Bilodeau GJ (2019) High-resolution biomonitoring of plant pathogens and plant species using metabarcoding of pollen pellet contents collected from a honey bee hive. Environ DNA 1(2):155–175. https://doi.org/10.1002/edn3.17

    Article  Google Scholar 

  132. Valentini A, Pompanon F, Taberlet P (2009) DNA barcoding for ecologists. Trends Ecol Evol 24(2):110–117. https://doi.org/10.1016/j.tree.2008.09.011

    Article  PubMed  Google Scholar 

  133. van Velzen R, Weitschek E, Felici G, Bakker FT (2012) DNA barcoding of recently diverged species: relative performance of matching methods. PLoS ONE 7(1):e30490. https://doi.org/10.1371/journal.pone.0030490

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. VrÅlstad T (2011) ITS, OTUs and beyond-fungal hyperdiversity calls for supplementary solutions. Mol Ecol 20(14):2873–2875. https://doi.org/10.1111/j.1365-294X.2011.05149.x

    Article  PubMed  Google Scholar 

  135. Vialle A, Feau N, Allaire M et al (2009) Evaluation of mitochondrial genes as DNA barcode for Basidiomycota. Mol Ecol Resour 9:99–113. https://doi.org/10.1111/j.1755-0998.2009.02637.x

    CAS  Article  PubMed  Google Scholar 

  136. Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PloS One 4(10):e7401

  137. Wang X, Liu C, Huang L, Bengtsson-Palme J, Chen H, Zhang J, Cai D, Li J (2015) ITS 1: a DNA barcode better than ITS 2 in eukaryotes? Mol Ecol Resour 15:573–586. https://doi.org/10.1111/1755-0998.12325

    CAS  Article  PubMed  Google Scholar 

  138. Weiss M, Selosse MA, Rexer KH, Urban A, Oberwinkler F (2004) Sebacinales: A hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res 108(9):1003–1010. https://doi.org/10.1017/S0953756204000772

    Article  PubMed  Google Scholar 

  139. Weng FY, Chiou CS, Lin PHP, Yang SS (2009) Application of recA and rpoB sequence analysis on phylogeny and molecular identification of Geobacillus species. J Appl Microbiol 107(2):452–464. https://doi.org/10.1111/j.1365-2672.2009.04235.x

    CAS  Article  PubMed  Google Scholar 

  140. Whitworth TL, Dawson RD, Magalon H, Baudry E (2007) DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proc R Soc B 274(1619):1731–1739. https://doi.org/10.1098/rspb.2007.0062

    CAS  Article  PubMed  Google Scholar 

  141. Wodarz D, Aescht E, Foissner W (1992) A weighted coenotic index (WCI): description and application to soil animal assemblages. Biol Fertil soils 14:5–13. https://doi.org/10.1007/BF00336296

    Article  Google Scholar 

  142. Woodward SR, Weyand NJ, Bunnell M (1994) DNA sequence from cretaceous period bone fragments. Science 266(5188):1229–1232. https://doi.org/10.1126/science.7973705

    CAS  Article  PubMed  Google Scholar 

  143. Wu D, Hugenholtz P, Mavromatis K et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature. https://doi.org/10.1038/nature08656

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wurzbacher C, Larsson E, Bengtsson-Palme J, Van den Wyngaert S, Svantesson S, Kristiansson E, Kagami M, Nilsson RH (2019) Introducing ribosomal tandem repeat barcoding for fungi. Mol Ecol Resour 19(1):118–127. https://doi.org/10.1111/1755-0998.12944

    CAS  Article  PubMed  Google Scholar 

  145. Yang B, Wang Y, Qian PY (2016) Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform 17(1):1–8

  146. Yang RH, Su JH, Shang JJ, Wu YY, Li Y, Bao DP, Yao YJ (2018) Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS ONE 13(10):e0206428. https://doi.org/10.1371/journal.pone.0206428

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. Zeng ZQ, Zhao P, Luo J, Zhuang WY, Yu ZH (2012) Selection of a DNA barcode for Nectriaceae from fungal whole-genomes. Sci China Life Sci 55(1):80–88. https://doi.org/10.1007/s11427-012-4266-2

    CAS  Article  PubMed  Google Scholar 

  148. Zhang ZY, Han YF, Chen WH, Liang ZQ (2019) Phylogeny and taxonomy of three new Ctenomyces (Arthrodermataceae, Onygenales) species from China. MycoKeys 47:1. https://doi.org/10.3897/mycokeys.47.30740

    CAS  Article  Google Scholar 

  149. Zhao P, Luo J, Zhuang WY (2011) Practice towards DNA barcoding of the nectriaceous fungi. Fungal Divers 46(1):183–191. https://doi.org/10.1007/s13225-010-0064-y

    Article  Google Scholar 

  150. Zinger L, Donald J, Brosse S, Gonzalez MA, Iribar A, Leroy C, Murienne J, Orivel J, Schimann H, Taberlet P, Lopes CM (2020) Advances and prospects of environmental DNA in neotropical rainforests. Adv Ecol Res 62:331–373. https://doi.org/10.1016/bs.aecr.2020.01.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors duly acknowledge the financial support provided under the Project “Development of gene chip for detection of major fungal plant pathogens” under the Network project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS). The authors are also grateful to Director, ICAR-NBAIM for providing infrastructural facilities.

Funding

Authors are thankful to Application of Microorganisms in Agriculture and Allied Sectors (AMAAS), Indian Council of Agricultural Research for providing financial assistance to the project titled "Development of gene chip for the detection of major fungal plant pathogens".

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hillol Chakdar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhary, P., Singh, B.N., Chakdar, H. et al. DNA barcoding of phytopathogens for disease diagnostics and bio-surveillance. World J Microbiol Biotechnol 37, 54 (2021). https://doi.org/10.1007/s11274-021-03019-0

Download citation

Keywords

  • Barcode
  • Genome skimming
  • Meta-barcoding
  • Next generation sequencing