Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India

Abstract

Methane utilizing bacteria (MUB) are known to inhabit the flooded paddy ecosystem where they play an important role in regulating net methane (CH4) emission. We hypothesize that efficient MUB having plant growth-promoting (PGP) attributes can be used for developing novel bio-inoculant for flooded paddy ecosystem which might not only reduce methane emission but also assist in improving the plant growth parameters. Hence, soil and plant samples were collected from the phyllosphere, rhizosphere, and non-rhizosphere of five rice-growing regions of India at the tillering stage and investigated for efficient methane-oxidizing and PGP bacteria. Based on the monooxygenase activity and percent methane utilization on NMS medium with methane as the sole C source, 123 isolates were identified and grouped phylogenetically into 13 bacteria and 2 yeast genera. Among different regions, a significantly higher number of isolates were obtained from lowland flooded paddy ecosystems of Aduthurai (33.33%) followed by Ernakulum (20.33%) and Brahmaputra valley (19.51%) as compared to upland irrigated regions of Gaya (17.07%) and Varanasi (8.94%). Among sub-samples, a significantly higher number of isolates were found inhabiting the phyllosphere (58.54%) followed by non-rhizosphere (25.20%) and rhizosphere (15.45%). Significantly higher utilization of methane and PGP attributes were observed in 30 isolates belonging to genera Hyphomicrobium, Burkholderia, Methylobacterium, PaenibacillusPseudomonasRahnella, and MeyerozymaM. oryzae MNL7 showed significantly better growth with 74.33% of CH4 utilization at the rate of 302.9 ± 5.58 and exhibited half-maximal growth rate, Ks of 1.92 ± 0.092 mg CH4 L−1. Besides the ability to utilize CH4P. polymyxa MaAL70 possessed PGP attributes such as solubilization of P, K, and Zn, fixation of atmospheric N and production of indole acetic acid (IAA). Both these promising isolates can be explored in the future for developing novel biofertilizers for flooded paddies.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aban JL, Barcelo RC, Oda EE, Reyes GA, Balangcod TD, Gutierrez RM, Hipol RM (2017) Auxin production, phosphate solubilization and ACC deaminase activity of root symbiotic fungi (RSF) from Drynaria quercifolia L. Environ Pharmacol Life Sci 6(5):26–31

    Google Scholar 

  2. AlSayeda A, Fergalaa A, Khattabb S, Eldyasti A (2018) Kinetics of type I methanotrophs mixed culture enriched from waste activated sludge. Biochem Eng J 132:60–67. https://doi.org/10.1016/j.bej.2018.01.003

    CAS  Article  Google Scholar 

  3. Amouric A, Quéméneur M, Grossi V, Liebgott PP, Auria R, Casalot L (2010) Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. J Appl Microbiol 108:1903–1916. https://doi.org/10.1111/j.1365-2672.2009.04592.x

    CAS  Article  PubMed  Google Scholar 

  4. Amprayn KO, Rose MT, Kecskés M, Pereg L, Nguyen HT, Kennedy IR (2012) Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl Soil Ecol 61:295–299. https://doi.org/10.1016/j.apsoil.2011.11.009

    Article  Google Scholar 

  5. Arp DJ, Stein LY (2003) Metabolism of inorganic N compounds by ammonia-oxidizing bacteria. Crit Rev Biochem Mol Biol 38(6):471–495. https://doi.org/10.1080/10409230390267446

    CAS  Article  PubMed  Google Scholar 

  6. Beck DA, McTaggart TL, Setboonsarng U, Vorobev A, Goodwin L, Shapiro N, Woyke T, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2015) Multiphyletic origins of methylotrophy in Alphaproteobacteria, exemplified by comparative genomics of Lake Washington isolates. Environ Microbiol 17:547–554. https://doi.org/10.1111/1462-2920.12736

    CAS  Article  PubMed  Google Scholar 

  7. Berge O, Heulin T, Achouak W, Richard C, Rene B, Balandreau J (2011) Rahnella aquatilis, a nitrogen-fixing enteric bacterium associated with the rhizosphere of wheat and maize. Can J Microbiol 37(3):195–203. https://doi.org/10.1139/m91-030

    Article  Google Scholar 

  8. Boden R, Thomas E, Savani P, Kelly DP, Wood AP (2008) Novel methylotrophic bacteria isolated from the River Thames (London, UK). Environ Microbiol 10:3225–3236. https://doi.org/10.1111/j.1462-2920.2008.01711.x

    Article  PubMed  Google Scholar 

  9. Boiesen A, Arvin E, Broholm K (1993) Effect of mineral nutrients on the kinetics of methane utilization by methanotrophs. Biodegradation 4(3):163–170. https://doi.org/10.1007/bf00695118

    CAS  Article  Google Scholar 

  10. Borja R, Rincón B, Raposo F, Alba J, Martın A (2003) Kinetics of mesophilic anaerobic digestion of the two-phase olive mill solid waste. Biochem Eng J 15(2):139–145. https://doi.org/10.1016/s1369-703x(02)00194-8

    CAS  Article  Google Scholar 

  11. Bowman JP, Sly LI, Nichols PD, Hayward AC (1993) Revised taxonomy of the methanotrophs—description of Methylobacter gen-nov, emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group-I methanotrophs. Int J Syst Bacteriol 43:735–753. https://doi.org/10.1099/00207713-44-2-375

    Article  Google Scholar 

  12. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  13. Brindha RK, Vasudevan N (2017) Methane oxidation capacity of methanotrophs isolated from different soil ecosystems. Int J Environ Sci Technol 15(9):1931–1940. https://doi.org/10.1007/s13762-017-1546-1

    CAS  Article  Google Scholar 

  14. Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349. https://doi.org/10.1128/jb.184.2.344-349.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Castanheira N, Dourado A, Kruz S, Alves P, Delgado-Rodríguez A, Pais I, Semedo J, Scotti-Campos P, Sánchez C, Borges N, Carvalho G, Barreto Crespo M, Fareleira P (2016) Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils. J Appl Microbiol 120:724–739. https://doi.org/10.1111/jam.13025

    CAS  Article  PubMed  Google Scholar 

  16. Castro-Gonzalez R, Martinez-Aguilar L, Ramirez-Trujillo A, Estrada-de los Santos P, Caballero-Mellado J (2011) High diversity of culturable Burkholderia species associated with sugarcane. Plant Soil 345:155–169. https://doi.org/10.1007/s11104-011-0768-0

    CAS  Article  Google Scholar 

  17. Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26(8):703–714. https://doi.org/10.1016/j.tim.2018.01.011

    CAS  Article  PubMed  Google Scholar 

  18. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2010) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499. https://doi.org/10.1146/annurev.micro.091208.073600

    CAS  Article  Google Scholar 

  19. Chowdhary TR, Dick R (2013) Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands. Appl Soil Ecol 65:8–22. https://doi.org/10.1016/j.apsoil.2012.12.014

    Article  Google Scholar 

  20. Conrad R (2020) Methane production in soil environments—anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 8(6):881. https://doi.org/10.3390/microorganisms8060881

    CAS  Article  PubMed Central  Google Scholar 

  21. Cui J, Zhao J, Wang Z, Cao W, Zhang S, Liu J, Bao Z (2020) Diversity of active root-associated methanotrophs of three emergent plants in a eutrophic wetland in northern China. AMB Express 10(1):1–9. https://doi.org/10.1186/s13568-020-00984-x

    Article  Google Scholar 

  22. Davamani V, Parameswari E, Arulmani S (2020) Mitigation of methane gas emissions in flooded paddy soil through the utilization of methanotrophs. Sci Total Environ 726:138570. https://doi.org/10.1016/j.scitotenv.2020.138570

    CAS  Article  PubMed  Google Scholar 

  23. Dedysh SN, Panikov NS, Tiedje JM (1998) Acidophilic methanotrophic communities from Sphagnum peat bogs. Appl Environ Microbiol 64:922–929. https://doi.org/10.1128/aem.64.3.922-929.1998

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Dedysh SN, Dunfield PF, Trotsenko YA (2004) Methane utilization by Methylobacterium species: new evidence but still no proof for an old controversy. Int J Syst Evol Microbiol 54(6):1919–1920. https://doi.org/10.1099/ijs.0.63493-0

    Article  PubMed  Google Scholar 

  25. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670. https://doi.org/10.1128/jb.187.13.4665-4670.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Delhoménie M, Josiane N, Bibeau L, Heitz M (2008) A new method to determine the microbial kinetic parameters in biological air filters. Chem Eng Sci 63(16):4126–4134. https://doi.org/10.1016/j.ces.2008.05.020

    CAS  Article  Google Scholar 

  27. Deng Y, Cui X, Dumont MG (2016) Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiol Lett 363(16):168. https://doi.org/10.1093/femsle/fnw168

    CAS  Article  Google Scholar 

  28. Dianou D, Espiritu BM, Adachi K, Senboku T (1997) Isolation and some properties of methane-oxidizing bacteria from a subtropical paddy field. Soil Sci Plant Nutr 43(3):735–740. https://doi.org/10.1080/00380768.1997.10414798

    CAS  Article  Google Scholar 

  29. Dianou D, Ueno C, Ogiso T, Kimura M, Asakawa S (2009) Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ 27(3):278–287. https://doi.org/10.1264/jsme2.me11327

    Article  Google Scholar 

  30. Dourado MN, Neves AAC, Santos DS, Araujo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. Biomed Res Int 2015:19. https://doi.org/10.1155/2015/909016

    CAS  Article  Google Scholar 

  31. Dubey SK, Padmanabhan P, Purohit HJ, Upadhyay SN (2003) Tracking of methanotrophs and their diversity in paddy soil: a molecular approach. Curr Sci 85(1):92–95

    CAS  Google Scholar 

  32. Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000Research. https://doi.org/10.12688/f1000research.8221.1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853. https://doi.org/10.1093/nar/17.19.7843

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Ferenci T, Strom T, Quayle JR (1975) Oxidation of carbon monoxide and methane by Pseudomonas methanica. J Gen Microbiol 91(1):79–91. https://doi.org/10.1099/00221287-91-1-79

    CAS  Article  PubMed  Google Scholar 

  35. Ferrando L, Tarlera S (2009) Activity and diversity of methanotrophs in the soil-water interface and rhizospheric soil from a flooded temperate rice field. J Appl Microbiol 106:306–316. https://doi.org/10.1111/j.1365-2672.2008.04004.x

    CAS  Article  PubMed  Google Scholar 

  36. Frenzel P (2000) Plant-associated methane oxidation in rice fields and wetlands. Adv Microb Ecol 16:85–114. https://doi.org/10.1007/978-1-4615-4187-5_3

    CAS  Article  Google Scholar 

  37. Ghashghavi M, Jetten MSM, Lüke C (2017) Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express 7(1):162. https://doi.org/10.1186/s13568-017-0466-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26(1):192. https://doi.org/10.1104/pp.26.1.192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Graham DW, Korich DG, LeBlanc RP, Sinclair NA, Arnold RG (1992) Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58(7):2231–2236. https://doi.org/10.1128/aem.58.10.3441-3441.1992

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Grossi CEM, Fantino E, Serral F, Zawoznik MS, Fernandez DPDA, Ulloa RM (2020) Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Front Plant Sci 11:71. https://doi.org/10.3389/fpls.2020.00071

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamamura N, Arp DJ (2000) Isolation and characterization of alkane-utilizing Nocardioides sp. strain CF8. FEMS Microbiol Lett 186:21–26. https://doi.org/10.1111/j.1574-6968.2000.tb09076.x

    CAS  Article  PubMed  Google Scholar 

  42. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene ethylene assay for N2 fixation. Laboratory and field evaluation. Plant Physiol 43:1185–1207. https://doi.org/10.1104/pp.43.8.1185

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Hasan E (2013) Proposing mitigation strategies for reducing the impact of rice cultivation on climate change in Egypt. Water Sci 27(54):69–77. https://doi.org/10.1016/j.wsj.2013.12.007

    Article  Google Scholar 

  44. Hayes AC, Liss SN, Allen DG (2010) Growth Kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Appl Environ Microbiol 76(16):5423–5431. https://doi.org/10.1128/aem.00076-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Hou CT, Patel RN, Laskin AI, Barnabe N, Barist I (1983) Purification and properties of a NAD-linked 1,2-propanediol dehydrogenase from propane-grown Pseudomonas fluorescens NRRL B-1244. Arch Biochem Biophys 223(1):297–308. https://doi.org/10.1016/0003-9861(83)90595-7

    CAS  Article  PubMed  Google Scholar 

  46. Iguchi H, Yurimoto H, Sakai Y (2015) Interactions of methylotrophs with plants and other heterotrophic bacteria. Microorganisms 3(2):137–151. https://doi.org/10.3390/microorganisms3020137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535

    Google Scholar 

  48. Islam T, Gessesse A, Garcia-Moyano A, Murrell JC, Øvreås L (2020) A novel moderately thermophilic type Ib methanotroph isolated from an alkaline thermal spring in the ethiopian rift valley. Microorganisms 8(2):250. https://doi.org/10.3390/microorganisms8020250

    CAS  Article  PubMed Central  Google Scholar 

  49. Ivanova EG, Doronina NV, Trotsenko YA (2001) Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70:392–397. https://doi.org/10.1023/A:1010469708107

    CAS  Article  Google Scholar 

  50. Jan FG, Hamayun M, Hussain A, Iqbal A, Jan G, Khan SF, Khan H, Lee I (2019) A promising growth promoting Meyerozyma caribbica from Solanum xanthocarpum alleviated stress in maize plants. Biosci Rep 39(10):20190290. https://doi.org/10.1042/bsr20190290

    CAS  Article  Google Scholar 

  51. Jayshree S, Vadivukkarasi P, Anand K, Kato Y, Seshadri S (2011) Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch Microbiol 193(8):543–552. https://doi.org/10.1007/s00203-011-0691-z

    CAS  Article  Google Scholar 

  52. Jeong SY, Kim TG (2018) Development of a novel methanotrophic process with the helper microorganism Hyphomicrobium sp. NM3. . Appl Microbiol. https://doi.org/10.1111/jam.14140

    Article  Google Scholar 

  53. Jhala YK, Vyas RV, Sheat HN, Patel HK, Patel KT (2014) Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem. World J Microbiol Biotechnol 30:1845–1860. https://doi.org/10.1007/s11274-014-1606-3

    CAS  Article  PubMed  Google Scholar 

  54. Jhala YK, Vyas RV, Panpatte DG, Shelat HN (2016) Rapid methods for isolation and screening of methane degrading bacteria. J Bioremed Biodegrad 7(1):1–5. https://doi.org/10.4172/2155-6199.1000322

    CAS  Article  Google Scholar 

  55. Ji Y, Mao G, Wang Y, Bartlam M (2013) Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol 4:58. https://doi.org/10.3389/fmicb.2013.00058

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kalyuzhnaya MG, De Marco P, Bowerman S, Pacheco CC, Lara JC, Lidstrom ME, Chistoserdova L (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56(11):2517–2522. https://doi.org/10.1099/ijs.0.64422-0

    CAS  Article  PubMed  Google Scholar 

  57. Kalyuzhnaya MG, Hristova KR, Lidstrom ME, Chistoserdova L (2008) Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. J Bacteriol 190(11):3817–3823. https://doi.org/10.1128/jb.00180-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Kampen WH (2014) Nutritional requirements in fermentation processes. In: Kampen WH (ed) Fermentation and biochemical engineering handbook. William Andrew Publishing, Amsterdam, pp 37–57

    Google Scholar 

  59. Ke X, Lu Y, Conrad R (2014) Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms. FEMS Microbiol Ecol 87(1):18–29. https://doi.org/10.1111/1574-6941.12188

    CAS  Article  PubMed  Google Scholar 

  60. Keppler F, Boros M, Frankenberg C, Lelieveld J, McLeod A, Pirttilä AM, Röckmann T, Schnitzler JP (2009) Methane formation in aerobic environments. Environ Chem 6:459–465. https://doi.org/10.1071/en09137

    CAS  Article  Google Scholar 

  61. Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF (2018) Evolutionary history of copper membrane monooxygenases. Front Microbiol 9:2493. https://doi.org/10.3389/fmicb.2018.02493

    Article  PubMed  PubMed Central  Google Scholar 

  62. Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Munir I, Xue J, Zhang X (2020) Isolation and characterization of plant growth-promoting endophytic bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. Biomed Res Int 2020:1–17. https://doi.org/10.1155/2020/8650957

    CAS  Article  Google Scholar 

  63. Kim TG, Jeong SY, Cho KS (2014) Functional rigidity of a methane biofilter during the temporal microbial succession. Appl Microbiol Biotechnol 98:3275–3286. https://doi.org/10.1007/s00253-013-5371-2

    CAS  Article  PubMed  Google Scholar 

  64. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390. https://doi.org/10.1038/ismej.2011.192

    CAS  Article  Google Scholar 

  65. Kolb S, Stacheter A (2013) Prerequisites for amplicon pyrosequencing of microbial methanol-utilizers in the environment. Front Microbiol 4:268. https://doi.org/10.3389/fmicb.2013.00268

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kravchenko I, Sukhacheva M (2017) Methane oxidation and diversity of aerobic methanotrophs in forest and agricultural soddy–podzolic soils. Appl Soil Ecol 119:267–274. https://doi.org/10.1016/j.apsoil.2017.06.034

    Article  Google Scholar 

  67. Kumar S, Vikram S, Raghava GPS (2012) Genome sequence of the nitroaromatic compound degrading bacterium Burkholderia sp. strain SJ98. J Bacteriol 194:3286. https://doi.org/10.1128/jb.00497-12

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Kumar M, Srivastava AK, Pandey AK (2015) Biocontrol activity of some potent methylotrophs isolated from bhitarkanika mangrove sediment. Biosci Plant Biol 2(6):101–106

    Google Scholar 

  69. Kurniawati FD, Setyanto P, Cahyani VR (2018) The dynamics of methane (CH4) emissions in organic and conventional paddy fields on Alfisols and Andisols at Karanganyar Regency, Indonesia. IOP Conf Ser Earth Environ Sci 200:1–7. https://doi.org/10.1088/1755-1315/200/1/012026

    Article  Google Scholar 

  70. Kurtzman CP, Suzuki M (2010) Meyerozyma. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 621–624

    Google Scholar 

  71. Li Y, Wang Y, Lin Z, Wang J, He Q, Zhou J (2018) A novel methanotrophic cometabolic system with high soluble methane monooxygenase activity to biodegrade refractory organics in pulping wastewater. Bioresour Technol 256:358–365. https://doi.org/10.1016/j.biortech.2018.02.048

    CAS  Article  PubMed  Google Scholar 

  72. Liu X, Li Q, Li Y, Guan G, Chen S (2019) Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ 7:e7445. https://doi.org/10.7287/peerj.7445v0.2/reviews/2

    Article  PubMed  PubMed Central  Google Scholar 

  73. Luke C, Bodrossy L, Lupotto E, Frenzel P (2011) Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. Environ Microbiol Rep 3(5):518–525. https://doi.org/10.1111/j.1758-2229.2011.00251.x

    CAS  Article  PubMed  Google Scholar 

  74. Luvizotto DM, Marcon J, Andreote FD, Dini-Andreote F, Neves AA, Araújo WL, Pizzirani-Kleiner AA (2010) Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots. World J Microbiol Biotechnol 26:1829–1836. https://doi.org/10.1007/s11274-010-0364-0

    CAS  Article  Google Scholar 

  75. Macey MC, Pratscher J, Crombie AT, Murrell JC (2020) Impact of plants on the diversity and activity of methylotrophs in soil. Microbiome 8:31. https://doi.org/10.1186/s40168-020-00801-4

    Article  PubMed  PubMed Central  Google Scholar 

  76. Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp. Nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331. https://doi.org/10.1099/ijs.0.64603-0

    CAS  Article  PubMed  Google Scholar 

  77. Madhaiyan M, Poonguzhali S, Kwon ASAT (2009a) Methylophilus rhizosphaerae sp. nov., a restricted facultative methylotroph isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 59:2904–2908. https://doi.org/10.1099/ijs.0.009811-0

    CAS  Article  PubMed  Google Scholar 

  78. Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2009b) Methylobacterium phyllosphaerae sp. nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27. https://doi.org/10.1099/ijs.0.001693-0

    CAS  Article  PubMed  Google Scholar 

  79. Madhaiyan M, Alex TH, Ngoh ST, Prithiviraj B, Ji L (2015) Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnol Biofuels 8:222. https://doi.org/10.1186/s13068-015-0404-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Madhaiyan M, Poonguzhali S, Saravanan VS, Duraipandiyan V, Al-Dhabi NA, Kwon SW, Whitman WB (2017) Paenibacillus polysaccharolyticus sp. nov., a xylanolytic and cellulolytic bacteria isolated from leaves of Bamboo Phyllostachys aureosulcata. Int J Syst Evol Microbiol 67(7):2127–2133. https://doi.org/10.1099/ijs.0.001693-0

    CAS  Article  PubMed  Google Scholar 

  81. Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants 17(1):25–32. https://doi.org/10.1007/s12298-010-0041-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Malyan SK, Bhatia A, Kumar A, Gupta DK, Singh R, Kumar SS, Tomer R, Kumar O, Jain N (2016) Methane production, oxidation, and mitigation: a mechanistic understanding and comprehensive evaluation of influencing factors. Sci Total Environ 572:874–896. https://doi.org/10.1016/j.scitotenv.2016.07.182

    CAS  Article  PubMed  Google Scholar 

  83. Mayumi D, Yoshimoto T, Uchiyama H, Nomura N, Nakajima-Kambe T (2010) Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Microbes Environ 25:156–163. https://doi.org/10.1264/jsme2.me10120

    Article  PubMed  Google Scholar 

  84. Meena KK, Kumar M, Kalyuzhnaya MG, Yandigeri MS, Singh DP, Saxena AK, Arora DK (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101(4):777–786. https://doi.org/10.1007/s10482-011-9692-9

    CAS  Article  PubMed  Google Scholar 

  85. Meena KK, Kumar M, Mishra S, Ojha SK, Goraksha C, Wakchaure C, Sarkar B (2015) Phylogenetic study of methanol oxidizers from chilika-lake sediments using genomic and metagenomic approaches. Indian J Microbiol 55(2):151–162. https://doi.org/10.1007/s12088-015-0510-3

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, Kim JG, Jung MY, Rhee SK (2018) Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol 9:1982. https://doi.org/10.3389/fmicb.2018.01982

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nielsen AK, Gerdes K, Murrell JC (1997) Copper-dependent reciprocal transcriptional regulation of methane monooxygenase genes in Methylococcus capsulatus and Methylosinus trichosporium. Mol Microbiol 25(2):399–409. https://doi.org/10.1046/j.1365-2958.1997.4801846.x

    CAS  Article  PubMed  Google Scholar 

  88. Olsen SR, Cole CV, Watanabe FS, Dean. LA (1954) Estimation of available phosphorus in soils by extraction with NaHCO3, USDA Cir.939. U.S. Washington

  89. Park YS, Kim TH, Yun CW (2017) Functional characterization of the copper transcription factor AfMac1 from Aspergillus fumigatus. Biochem J 474:2365–2378. https://doi.org/10.1042/bcj20170191

    CAS  Article  PubMed  Google Scholar 

  90. Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26(2):226–229. https://doi.org/10.1099/00207713-26-2-226

    CAS  Article  Google Scholar 

  91. Prajapati RR, Jhala YK, Vyas RV (2017) In vitro study of plant growth promoting methylotrophic bacterial consortium as a plant probiotics for paddy. Int J Curr Microbiol Appl Sci 6(5):2608–2626. https://doi.org/10.20546/ijcmas.2017.605.294

    CAS  Article  Google Scholar 

  92. Pratama AA, Jiménez DJ, Chen Q, Bunk B, Spröer C, Overmann J, Van Elsas JD (2020) Delineation of a subgroup of the genus Paraburkholderia, including P. terrae DSM 17804T, P. hospita DSM 17164T, and four soil-isolated fungiphiles, reveals remarkable genomic and ecological features—proposal for the definition of a P. hospita species cluster. Genome Biol Evol 12(4):325–344. https://doi.org/10.1093/gbe/evaa031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Rani V, Bhatia A, Nain L, Kaushik R (2020) Flooded paddy ecosystem harbors methanol oxidizing-plant growth promoting bacteria belonging to order enterobacterales. Int J Curr Microbiol Appl Sci 9(7):685–696. https://doi.org/10.20546/ijcmas.2020.907.079

    CAS  Article  Google Scholar 

  94. Razaghi A, Kartik O, Heimann K (2014) Methane oxidation by the oleaginous yeast, Rhodotorula glutinis—fact or fiction? In: Presented at the north queensland festival of life sciences 2014. From: North Queensland Festival of Life Sciences 2014, 5 November 2014, Townsville, QLD, Australia

  95. Redmond MC, Valentine DL, Sessions AL (2010) Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. Appl Environ Microbiol 76(19):6412–6422. https://doi.org/10.1128/aem.00271-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Roodi D, Millner JP, McGill C, Johnson RD, Jauregui R, Card SD (2020) Methylobacterium, a major component of the culturable bacterial endophyte community of wild Brassica seed. PeerJ 8:e9514. https://doi.org/10.7717/peerj.9514

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rosli MA, Azam ZM, Othman NZ, Sarmidi MR (2020) Paenibacillus polymyxa role involved in phosphate solubilization and growth promotion of Zea mays under abiotic stress condition. Proc Natl Acad Sci India Sect B Biol Sci 90:63–71. https://doi.org/10.1007/s40011-019-01081-1

    CAS  Article  Google Scholar 

  98. Ross MO, Rosenzweig AC (2017) A tale of two methane monooxygenases. J Biol Inorg Chem 22:307–319. https://doi.org/10.1007/s00775-016-1419-y

    CAS  Article  PubMed  Google Scholar 

  99. Rostkowskia KH, Pflugerb AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Biores Technol 132:71–77. https://doi.org/10.1016/j.biortech.2012.12.129

    CAS  Article  Google Scholar 

  100. Ruas FAD, Guerra-Sá R (2020) In silico prediction of protein-protein interaction network induced by manganese II in Meyerozyma guilliermondii. Front Microbiol 11:236. https://doi.org/10.3389/fmicb.2020.00236

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rusmana I, Akhdiya A (2009) Isolation and characterization of Methanotrophic bacteria from rice fields. Biotropia 16(2):71–78. https://doi.org/10.11598/btb.2009.16.2.53

    Article  Google Scholar 

  102. Schmidt H, Eickhorst T (2014) Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescence in situ hybridization. FEMS Microbiol Ecol 87(2):390–402. https://doi.org/10.1111/1574-6941.12232

    CAS  Article  PubMed  Google Scholar 

  103. Setiawan R, Sudiana IM (2019) Molecular identification of methane oxidizing bacteria from paddy soils and detection methane monooxygenase gene. In: IOP conference series: earth and environmental science, vol. 308, no. 1, p. 012016. IOP Publishing

  104. Singh JS, Pandey VC, Singh DP, Singh RP (2010) Influences of pyrite and farmyard manure on population dynamics of soil methanotroph and rice yield in saline rain-fed field. Agric Ecosyst Environ 139:74–79. https://doi.org/10.1016/j.agee.2010.07.003

    Article  Google Scholar 

  105. Stralis-Pavese N, Bodrossy L, Reichenauer TG, Weilharter A, Sessitsch A (2006) 16S rRNA based T-RFLP analysis of methane oxidizing bacteria—assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl Soil Ecol 31:251–266. https://doi.org/10.1016/j.apsoil.2005.05.006

    Article  Google Scholar 

  106. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266. https://doi.org/10.1007/s00248-011-9929-1

    Article  PubMed  Google Scholar 

  107. Sun F, Ou Q, Wang N, Guo Z, Ou Y, Li N, Peng C (2020) Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Glob Ecol Conserv 23:e01141. https://doi.org/10.1016/j.gecco.2020.e01141

    Article  Google Scholar 

  108. Takahashi J (1980) Production of intracellular protein from n-butane by Pseudomonas butanovora sp. nov. Adv Appl Microbiol 26:117–127. https://doi.org/10.1016/s0065-2164(08)70332-0

    CAS  Article  Google Scholar 

  109. Takeda K, Tonouchi A, Takada M, Suko T, Suzuki S, Kimura Y, Matsuyama N, Fujita T (2008) Characterization of cultivable methanotrophs from paddy soils and rice roots. Soil Sci Plant Nutr 54(6):876–885. https://doi.org/10.1111/j.1747-0765.2008.00318.x

    CAS  Article  Google Scholar 

  110. Taopan RA, Rusmana I, Santosa DA (2018) The Effect of methanotrophic bacteria application on paddy growth and methane emission in rainfed rice of kupang regency ,East Nusa Tenggara, Indonesia. Int J Environ Agric Biotechnol 3(5):1759–1764. https://doi.org/10.22161/ijeab/3.5.25

    Article  Google Scholar 

  111. Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58(3):682–692. https://doi.org/10.1111/j.1365-2958.2005.04861.x

    CAS  Article  PubMed  Google Scholar 

  112. Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoids nigra DN34). Int J Syst Evol Microbiol 54:1191–1196. https://doi.org/10.1099/ijs.0.02796-0

    CAS  Article  PubMed  Google Scholar 

  113. Ventorino V, Sannino F, Piccolo A, Cafaro V, Carotenuto R, Pepe O (2014) Methylobacterium populi VP2: plant growth-promoting bacterium isolated from a highly polluted environment for polycyclic aromatic hydrocarbon (PAH) biodegradation. Sci World J 2014:1–14. https://doi.org/10.1155/2014/931793

    CAS  Article  Google Scholar 

  114. Vishwakarma P, Dubey SK (2010) Diversity of methanotrophs in urea-fertilized tropical rice agroecosystem. Indian J Microbiol 50:205–211. https://doi.org/10.1007/s12088-010-0040-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Vuilleumier S, Nadalig T, Haque MFU, Magdelenat G, Lajus A, Roselli S, Muller EE, Gruffaz C, Barbe V, Médigue C, Bringel F (2011) Complete genome sequence of the chloromethane-degrading Hyphomicrobium sp. strain MC1. J Bacteriol 193(18):5035–5036. https://doi.org/10.1128/jb.05627-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Wackett L, Gibson D (1983) Rapid method for detection and quantitation of hydroxylated aromatic intermediates produced by microorganisms. Appl Environ Microbiol 45(3):1144–1147. https://doi.org/10.1128/aem.45.3.1144-1147.1983

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Wassmann R, Aulakh MS (2000) The role of rice plants in regulating mechanisms of methane emissions. Biol Fertil Soil 31:20–29. https://doi.org/10.1007/s003740050619

    CAS  Article  Google Scholar 

  118. White TJ, Bruns T, Lee SJWT, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 18(1):315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1

    Article  Google Scholar 

  119. Whittenbury R, Davies SL, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218. https://doi.org/10.1099/00221287-61-2-205

    CAS  Article  PubMed  Google Scholar 

  120. Wolf HJ, Hanson RS (1979) Isolation and characterization of methane-utilizing yeasts. J Gen Microbiol 114(1):187–194. https://doi.org/10.1099/00221287-114-1-187

    Article  Google Scholar 

  121. Yaghoubi M, Ricciuti P, Allegretta I, Terzano R, Crecchio C (2018) Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions. Environ Sci Pollut Res 25(1):1–9. https://doi.org/10.1007/s11356-018-2638-2

    CAS  Article  Google Scholar 

  122. Yang HL, Liao YY, Zhang J, Wang XL (2019) Comparative transcriptome analysis of salt tolerance mechanism of Meyerozyma guilliermondii W2 under NaCl stress. 3 Biotech 9(7):286. https://doi.org/10.1007/s13205-019-1817-2

    Article  PubMed  PubMed Central  Google Scholar 

  123. Yusuf RO, Noor ZZ, Abba AH, Hassan MAA, Din MFM (2012) Methane emission by sectors: a comprehensive review of emission sources and mitigation methods. Renew Sustain Energy Rev 16(7):5059–5070. https://doi.org/10.1016/j.rser.2012.04.008

    CAS  Article  Google Scholar 

  124. Zhao J, Cai Y, Jia Z (2020) The pH-based ecological coherence of active canonical methanotrophs in paddy soils. Biogeosciences. https://doi.org/10.5194/bg-17-1451-2020

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Indian Council of Agricultural Research (ICAR) funded project National Innovations on Climate Resilient Agriculture (NICRA) for sponsoring this research. We also acknowledge the University Grant Commission for providing Senior Research Fellowship to the research scholar. We are grateful to the Indian Agricultural Research Institute for providing lab facilities at the Division of Microbiology and the Centre for Environment Science and Climate Resilient Agriculture, New Delhi.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kaushik.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (DOCX 183 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rani, V., Bhatia, A., Nain, L. et al. Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 37, 56 (2021). https://doi.org/10.1007/s11274-021-03018-1

Download citation

Keywords

  • Rice
  • Methane
  • Methane utilizing microorganisms
  • Methylobacterium
  • Paenibacillus
  • Plant growth promoter