Skip to main content
Log in

Recent developments in siderotyping: procedure and application

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Siderophores are metal chelating secondary metabolites secreted by almost all organisms. Beside iron starvation, the ability to produce siderophores depends upon several other factors. Chemical structure of siderophore is very complex with vast structural diversity, thus the principle challenge involves its detection, quantification, purification and characterisation. Metal chelation is its most fascinating attribute. This metal chelation property is now forming the basis of its application as molecular markers, siderotyping tool for taxonomic clarification, biosensors and bioremediation agents. This has led researchers to develop and continuously modify previous techniques in order to provide accurate and reproducible methods of studying siderophores. Knowledge obtained via computational approaches provides a new horizon in the field of siderophore biosynthetic gene clusters and their interaction with various proteins/peptides. This review illustrates various techniques, bioinformatics tools and databases employed in siderophores’ studies, the principle of analytical methods and their recent applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdallah Hussein K, Joo JH (2019) Zinc ions affect siderophore production by fungi isolated from the Panax ginseng rhizosphere. J Microbiol Biotechnol 29(1):105–113

    PubMed  Google Scholar 

  • Abdo A, Caboche S, Leclère V, Jacques P, Pupin M (2012) A new fingerprint to predict nonribosomal peptides activity. J Comput Aided Mol Des 26(10):1187–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acquah KS, Beukes DR, Warner DF, Meyers PR, Sunassee SN, Maglangit F, Gammon DW (2020) Novel South African rare actinomycete Kribbella speibonae strain SK5: a prolific producer of hydroxamate siderophores including new dehydroxylated congeners. Molecules 25(13):2979

    CAS  PubMed Central  Google Scholar 

  • Aoki T, Yoshizawa H, Yamawaki K, Yokoo K, Sato J, Hisakawa S, Hasegawa Y, Kusano H, Sano M, Sugimoto H, Nishitani Y, Sato T, Tsuji M, Nakamura R, Nishikawa T, Yamano Y (2018) Cefiderocol (S-649266), A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: Structure activity relationship. Eur J Med Chem 155:847–868

    CAS  PubMed  Google Scholar 

  • Arnow LE (1937) Colorimetric estimation of the components of 3,4-dihydroxy phenylalanine tyrosine mixtures. J Biol Chem 118:531–535

    CAS  Google Scholar 

  • Arora NK, Verma M (2017) Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech 7(6):381

    PubMed  PubMed Central  Google Scholar 

  • Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol 103(3):722–733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz O, Helal GA, Galal Y, Kader A, Rofaida S (2016) Fungal siderophores production in vitro as affected by some abiotic factors. Int J Curr Microbiol Appl Sci 5(6):210–222

    Google Scholar 

  • Bagg A, Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbiol Rev 51(4):509–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balado M, Lages MA, Fuentes-Monteverde JC, Martínez-Matamoros D, Rodríguez J, Jiménez C, Lemos ML (2018) The siderophore piscibactin is a relevant virulence factor for Vibrio anguillarum favored at low temperatures. Front Microbiol 9:1766

    PubMed  PubMed Central  Google Scholar 

  • Barelmann I, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2002) The structures of the pyoverdins from two Pseudomonas fluorescens strains accepted mutually by their respective producers. Z Naturforsch C J Biosci 57(1–2):9–16

    CAS  PubMed  Google Scholar 

  • Bhadra P, Shajahan MS, Patel PN, Bhattacharya E, Chadha A, Sekhar PK (2018) Immobilizing siderophores on solid surfaces for bacterial detection. J Electrochem Soc 165(8):B3017–B3022

    CAS  Google Scholar 

  • Bharucha UD, Patel KC, Trivedi UB (2013) Antifungal activity of catecholate type siderophore produced by Bacillus sp. Int J Res Pharm Sci 4(4):528–531

    Google Scholar 

  • Bhatt NB, Pandya DN, Wadas TJ (2018) Recent advances in zirconium-89 chelator development. Molecules 23(3):638

    PubMed Central  Google Scholar 

  • Boiteau RM, Fansler SJ, Farris Y, Shaw JB, Koppenaal DW, Pasa-Tolic L, Jansson JK (2018) Siderophore profiling of co-habitating soil bacteria by ultra-high resolution mass spectrometry. Metallomics 11:166–175

    Google Scholar 

  • Bourouni OC, El Bour M, Mraouna R, Abdennacer H, Boudabous A (2010) Antimicrobial activity of a marine isolate of Pseudomonas cepacia K2 from Ruditapes decussatus. Bull Inst Natl Sci Tech Mer de Salammbô 37:103–110

    Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    PubMed  Google Scholar 

  • Bufkin K, Sobrado P (2017) Characterization of the ornithine hydroxylation step in albachelin biosynthesis. Molecules 22(10):1652

    PubMed Central  Google Scholar 

  • Bultreys A, Gheysen I (2000) Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl Environ Microbiol 66(1):325–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butaitė E, Baumgartner M, Wyder S, Kümmerli R (2017) Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun 8:414

    PubMed  PubMed Central  Google Scholar 

  • Cao YR, Zhang XY, Deng JY, Zhao QQ, Xu H (2012) Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores. World J Microbiol Biotechnol 28(4):1727–1737

    CAS  PubMed  Google Scholar 

  • Choi JJ, McCarthy MW (2018) A novel siderophore cephalosporin. Expert Opin Investig Drugs 27(2):193–197

    CAS  PubMed  Google Scholar 

  • Chuljerm H, Deeudom M, Fucharoen S, Mazzacuva F, Hider RC, Srichairatanakool S, Cilibrizzi A (2020) Characterization of two siderophores produced by Bacillus megaterium: a preliminary investigation into their potential as therapeutic agents. Biochim Biophys Acta. https://doi.org/10.1016/j.bbagen.2020.129670

    Article  Google Scholar 

  • Chung Chun Lam CK, Jickells TD, Richardson DJ, Russell DA (2006) Fluorescence-based siderophore biosensor for the determination of bioavailable iron in oceanic waters. Anal Chem 78(14):5040–5045

    PubMed  Google Scholar 

  • Deshmukh NS, Puranik PR (2016) Influence of iron on growth and siderophore production by Phormidium sp. Glob J BioSci Biotechnol 5(3):355–361

    Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    CAS  PubMed  Google Scholar 

  • Ding S, Xu D, Li B, Fan C, Zhang C (2010) Improvement of 31P NMR spectral resolution by 8-hydroxyquinoline precipitation of paramagnetic Fe and Mn in environmental samples. Environ Sci Technol 44(7):2555–2561

    CAS  PubMed  Google Scholar 

  • Dinkla IJT, Gabor EM, Janssen DB (2001) Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Appl Environ Microbiol 67:3406–3412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duhme-Klair A-K (2009) From siderophores and self-assembly to luminescent sensors: the binding of molybdenum by catecholamides. Eur J Inorg Chem 25:3689–3701

    Google Scholar 

  • Dumas Z, Ross-Gillespie A, Kümmerli R (2013) Switching between apparently redundant iron-uptake mechanisms benefits bacteria in changeable environments. Proc Biol Sci 280(1764):20131055

    PubMed  PubMed Central  Google Scholar 

  • Edberg F, Kalinowski BE, Holmström SJM, Holm K (2010) Mobilization of metals from uranium mine waste: the role of pyoverdines produced by Pseudomonas fluorescens. Geobiology 8:278–292

    CAS  PubMed  Google Scholar 

  • Emery T (1986) Exchange of iron by gallium in siderophores. Biochemistry 25:4629–4633

    CAS  PubMed  Google Scholar 

  • Ferret C, Sterckeman T, Cornu JY, Gangloff S, Schalk IJ, Geoffroy VA (2014) Siderophore-promoted dissolution of smectite by fluorescent Pseudomonas. Environ Microbiol Rep 6(5):459–467

    CAS  PubMed  Google Scholar 

  • Flissi A, Dufresne Y, Michalik J, Tonon L, Janot S, Noé L, Jacques P, Leclère V, Pupin M (2016) Norine, the knowledgebase dedicated to non-ribosomal peptides, is now open to crowdsourcing. Nucleic Acids Res 44(D1):D1113–D1118

    CAS  PubMed  Google Scholar 

  • Fujita MJ, Nakano K, Sakai R (2013) Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum. Molecules 18(4):3917–3926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49(1–3):335–360

    CAS  PubMed  Google Scholar 

  • Gaonkar T, Bhosle S (2013) Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93(9):1835–1843

    CAS  PubMed  Google Scholar 

  • Gaonkar T, Borkar S (2017) Applications of siderophore producing marine bacteria in bioremediation of metals and organic compounds. In: Naik M, Dubey S (eds) Marine pollution and microbial remediation. Springer, Singapore, pp 177–187

    Google Scholar 

  • Garibaldi JA (1972) Influence of temperature on the biosynthesis of iron transport compounds by Salmonella typhimurium. J Bacteriol 110(1):262–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gokarn K, Pal RB (2018) Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria. Infect Drug Resist 11:61–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gokarn K, Sarangdhar V, Pal RB (2017) Effect of microbial siderophores on mammalian non-malignant and malignant cell lines. BMC Complement Altern Med 17(1):1–11

    Google Scholar 

  • Gu J, Codd R (2015) The resolution of two clinical agents, bleomycin and desferrioxamine B, from a Streptomyces verticillus fermentation mixture using multi-dimensional immobilised metal ion affinity chromatography. RSC Adv 5(5):3443–3453

    CAS  Google Scholar 

  • Haas H, Petrik M, Decristoforo C (2015) An iron-mimicking, Trojan horse-entering fungi-has the time come for molecular imaging of fungal infections? PLoS Pathog 11(1):e1004568

    PubMed  PubMed Central  Google Scholar 

  • Han AW, Sandy M, Fishman B, Trindade-Silva AE, Soares CAG, Distel DL, Butler A, Haygood AG (2013) Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901. PLoS ONE 8(10):e76151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartzen SH, Frimodt-Møller N, Thomsen VF (1989) The antibacterial activity of a siderophore 1. In vitro activity of deferoxamine alone and in combination with ascorbic acid on Staphylococcus aureus. APMIS 97(5):419–424

    CAS  PubMed  Google Scholar 

  • Hermenau R, Ishida K, Gama S, Hoffmann B, Pfeifer-Leeg M, Plass W, Hertweck C (2018) Gramibactin is a bacterial siderophore with a diazeniumdiolate ligand system. Nat Chem Biol 14(9):841–843

    CAS  PubMed  Google Scholar 

  • Hoenigl M, Orasch T, Faserl K, Prattes J, Loeffler J, Springer J, Gsaller F, Reischies F, Duettmann W, Raggam RB, Lindner H, Haas H (2019) Triacetylfusarinine C: a urine biomarker for diagnosis of invasive aspergillosis. J Infect 78(2):150–157

    PubMed  Google Scholar 

  • Hofmann M, Heine T, Schulz V, Hofmann S, Tischler D (2020) Draft genomes and initial characterization of siderophore producing pseudomonads isolated from mine dump and mine drainage. Biotechnol Rep 25:e00403. https://doi.org/10.1016/j.btre.2019.e00403

    Article  Google Scholar 

  • Hofmann M, Martin del Campo JS, Sobrado P, Tischler D (2020) Biosynthesis of desferrioxamine siderophores initiated by decarboxylases: a functional investigation of two lysine/ornithine-decarboxylases from Gordonia rubripertincta CWB2 and Pimelobacter simplex 3E. Arch Biochem Biophys 689:108429

    CAS  PubMed  Google Scholar 

  • Houedec SL, Chanvalon AT, Mouret A, Metzger E, Launeau P, Gaudin P, Lebeau T (2019) 2D Image quantification of microbial iron chelators (siderophores) using diffusive equilibrium in thin films method. Anal Chem 91(2):1399–1407

    PubMed  Google Scholar 

  • Huo Y, Kang JP, Chan Ahn J, Kim YJ, Piao CH, Yang DU, Yang DC (2020) Siderophore-producing rhizobacteria reduce heavy metal-induced oxidative stress in Panax ginseng Meyer. J Ginseng Res. https://doi.org/10.1016/j.jgr.2019.12.008

    Article  Google Scholar 

  • Hutchins DA, Rueter JG, Fish W (1991) Siderophore production and nitrogen fixation are mutually exclusive strategies in Anabaena 7120. Limnol Oceanogr 36:1–12

    CAS  Google Scholar 

  • Huyer M, Page WJ (1988) Zn increases siderophore production in Azotobacter vinelandii. Appl Environ Microbiol 54(11):2625–2631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ines M, Amel K, Yousra T, Neila D, Imen D, Marie MJ, Abdennasseur H (2012) Effect of dose-response of zinc and manganese on siderophore production. Am J Environ Sci 8:143–151

    Google Scholar 

  • Ito Y, Butler A (2005) Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnol Oceanogr 50(6):1918–1923

    CAS  Google Scholar 

  • Ito A, Kohira N, Bouchillon SK, West J, Rittenhouse S, Sader HS, Rhomberg PR, Jones RN, Yoshizawa H, Nakamura R, Tsuji M, Yamano Y (2016) In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother 71(3):670–677

    CAS  PubMed  Google Scholar 

  • Jeong S, Moonb HS, Kyoungphile N (2014) Enhanced uptake and translocation of arsenic in Cretan brake fern (Pteris cretica L.) through siderophorearsenic complex formation with an aid of rhizospheric bacterial activity. J Hazard Mater 280:536–543

    CAS  PubMed  Google Scholar 

  • Jin Z, Li J, Ni L, Zhang R, Xia A, Jin F (2018) Conditional privatization of a public siderophore enables Pseudomonas aeruginosa to resist cheater invasion. Nat Commun 9:1383

    PubMed  PubMed Central  Google Scholar 

  • Johnson DB, Kanao T, Hedrich S (2012) Redox transformations of iron at extremely low pH: fundamental and applied aspects. Front Microbiol 3:96

    PubMed  PubMed Central  Google Scholar 

  • Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–6339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir AH, Khatun MA, Hossain MM, Haider SA, Alam MF, Paul NK (2016) Regulation of phytosiderophore release and antioxidant defense in roots driven by shoot-based auxin signaling confers tolerance to excess iron in wheat. Front Plant Sci 7:1684

    PubMed  PubMed Central  Google Scholar 

  • Kavitha J, Lakshmi KS (2017) Design of experiments based validated HPTLC method for quantification of oxybenzone and avobenzone in personal care products. Eurasian J Anal Chem 12(4):417–428

    CAS  Google Scholar 

  • Kerry A, Laudenbach DE, Trick CG (1988) Influence of iron limitation and nitrogen source on growth and siderophore production by Cyanobacteria. J Phycol 24(4):566–571

    CAS  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: a review. Microbiol Res 212–213:103–111

    PubMed  Google Scholar 

  • Khan A, Gupta A, Singh P, Mishra AK, Ranjan RK, Srivastava A (2020) Siderophore-assisted cadmium hyperaccumulation in Bacillus subtilis. Int Microbiol 23:277–286

    CAS  PubMed  Google Scholar 

  • Khanolkar D, Dubey SK, Naik MM (2015) Tributyltin chloride (TBTCl)-enhanced exopolysaccharide and siderophore production in an estuarine Alcaligenes faecalis strain. Arch Environ Contam Toxicol 68(4):612–621

    CAS  PubMed  Google Scholar 

  • Kodani S, Komaki H, Suzuki M, Hemmi H, Ohnishi-Kameyama M (2015) Isolation and structure determination of new siderophore albachelin from Amycolatopsis alba. Biometals 28(2):381–389

    CAS  PubMed  Google Scholar 

  • Kramer J, Özkaya Ö, Kümmerli R (2020) Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18:152–163

    CAS  PubMed  Google Scholar 

  • Krasnoff SB, Howe KJ, Heck ML, Donzelli BGG (2020) Siderophores from the entomopathogenic fungus Beauveria bassiana. J Nat Prod 83(2):296–304

    CAS  PubMed  Google Scholar 

  • Kumar VS, Menon S, Agarwal H, Gopalakrishnan D (2017) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour Effic Technol 3(4):434–439

    Google Scholar 

  • Kumari S, Khan A, Singh P, Dwivedi SK, Ojha KK, Srivastava A (2019) Mitigation of As toxicity in wheat by exogenous application of hydroxamate siderophore of Aspergillus origin. Acta Physiol Plant 41:107

    Google Scholar 

  • Laine MH, Karwoski MT, Raaska LB, Mattila-Sandholm TM (1996) Antimicrobial activity of Pseudomonas spp. against food poisoning bacteria and moulds. Lett Appl Microbiol 22(3):214–218

    CAS  PubMed  Google Scholar 

  • Li Y, Jiang W, Gao R, Cai Y, Guan Z, Liao X (2018) Fe(III)-based immobilized metal-affinity chromatography (IMAC) method for the separation of the catechol siderophore from Bacillus tequilensis CD36. 3 Biotech 8(9):392

    PubMed  PubMed Central  Google Scholar 

  • Ma JF, Ueno H, Ueno D, Rombolà AD, Iwashita T (2003) Characterization of phytosiderophore secretion under Fe deficiency stress in Festuca rubra. Plant Soil 256:131–137

    CAS  Google Scholar 

  • Macrellis HM, Trick CG, Rue EL, Smith G, Bruland KW (2001) Collection and detection of natural iron-binding ligands from seawater. Mar Chem 76:175–187

    CAS  Google Scholar 

  • Maindad DV, Kasture VM, Chaudhari H, Dhavale DD, Chopade BA, Sachdev DP (2014) Characterization and fungal inhibition activity of siderophore from wheat rhizosphere associated Acinetobacter calcoaceticus Strain HIRFA32. Indian J Microbiol 54(3):315–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew A, Eldo AN, Molly AG (2011) Production optimization, characterization and antimicrobial activity of pyocyanin from Pseudomonas aeruginosa SPC B 65. Biotechnol Ind J 5(5):297–301

    CAS  Google Scholar 

  • Mazzei E, Iorio M, Maffioli SI, Sosio M, Donadio S (2012) Characterization of madurastatin C1, a novel siderophore from Actinomadura sp. J Antibiot (Tokyo) 65:267–269

    CAS  Google Scholar 

  • McHugh JP, Rodríguez-Quinoñes F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis. J Biol Chem 278(32):29478–29486

    CAS  PubMed  Google Scholar 

  • Meyer JM, Stintzi A, De Vos D, Cornelis P, Tappe R, Taraz K, Budzikiewicz H (1997) Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143(Pt 1):35–43

    CAS  PubMed  Google Scholar 

  • Meyer JM, Stintzi A, Coulanges V, Shivaji S, Voss JA, Taraz K, Budzikiewicz H (1998) Siderotyping of fluorescent pseudomonads: characterization of pyoverdines of Pseudomonas fluorescens and Pseudomonas putida strains from Antarctica. Microbiology 144(Pt 11):3119–3126

    CAS  PubMed  Google Scholar 

  • Mudhulkar R, Nair RR, Raval IH, Haldar S, Chatterjee PB (2017) Visualizing Zn2+ in living whole organism artemia by a natural fluorimetric intermediate siderophore. Chem Select 2(22):6407–6412

    CAS  Google Scholar 

  • Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun 505(2):606–611

    CAS  PubMed  Google Scholar 

  • Murugappan RM, Aravinth A, Rajaroobia R, Karthikeyan M, Alamelu MR (2012) Optimization of MM9 medium constituents for enhancement of siderophoregenesis in marine Pseudomonas putida using response surface methodology. Indian J Microbiol 52(3):433–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagendra PG, Bindu P (2016) Optimization of process parameters for siderophore production under solid state fermentation using polystyrene beads as inert support. J Sci Ind Res India 75(10):621–625

    Google Scholar 

  • Nair A, Juwarkar A, Singh SK (2007) Production and characterization of siderophores and its applications in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    CAS  Google Scholar 

  • Negash KH, Norris JKS, Hodgkinson JT (2019) Siderophore-antibiotic conjugate design: new drugs for bad bugs? Molecules 24(18):3314

    CAS  PubMed Central  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  PubMed  Google Scholar 

  • Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM (2018) Esterase-catalyzed siderophore hydrolysis activates an enterobactin ciprofloxacin conjugate and confers targeted antibacterial activity. J Am Chem Soc 140(15):5193–5201

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien S, Hodgson DJ, Buckling A (2014) Social evolution of toxic metal bioremediation in Pseudomonas aeruginosa. Proc Biol Sci 281(1787):20140858

    PubMed  PubMed Central  Google Scholar 

  • Ong KS, Cheow YL, Lee SM (2017) The role of reactive oxygen species in the antimicrobial activity of pyochelin. J Adv Res 8(4):393–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Özkaya Ö, Balbontín R, Gordo I, Xavier KB (2018) Cheating on cheaters stabilizes cooperation in Pseudomonas aeruginosa. Curr Biol 28:2070-2080.e6

    PubMed  Google Scholar 

  • Page MGP (2019) The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin Infect Dis 69(Suppl 7):S529–S537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan SJ, Tapley A, Adamson J, Little T, Urbanowski M, Cohen K, Pym A, Almeida D, Dorasamy A, Layre E, Young DC, Singh R, Patel VB, Wallengren K, Ndung’u T, Wilson D, Moody DB, Bishai W (2015) Biomarkers for tuberculosis based on secreted, species-specific, bacterial small molecules. J Infect Dis 212(11):1827–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul A, Dubey R (2015) Characterization of protein involved in nitrogen fixation and estimation of CO-factor. Int J Adv Biotechnol Res 5:582–597

    Google Scholar 

  • Petrik M, Haas H, Schrettl M, Helbok A, Blatzer M, Decristoforo C (2012) In vitro and in vivo evaluation of selected 68Ga-siderophores for infection imaging. Nucl Med Biol 39(3):361–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petrik M, Zhai C, Haas H, Decristoforo C (2017) Siderophores for molecular imaging applications. Clin Transl Imaging 5(1):15–27

    PubMed  Google Scholar 

  • Petrik M, Umlaufova E, Raclavsky V, Palyzova A, Havlicek V, Haas H, Novy Z, Dolezal D, Hajduch M, Decristoforo C (2018) Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci Rep 8(1):15698

    PubMed  PubMed Central  Google Scholar 

  • Pluháček T, Lemr K, Ghosh D, Milde D, Novák J, Havlíček V (2015) Characterization of microbial siderophores by mass spectrometry. Mass Spectrom Rev 35(1):35–47

    PubMed  Google Scholar 

  • Pupin M, Esmaeel Q, Flissi A, Dufresne Y, Jacques P, Leclère V (2016) Norine: a powerful resource for novel nonribosomal peptide discovery. Synth Syst Biotechnol 1(2):89–94

    CAS  PubMed  Google Scholar 

  • Raju M, Nair RR, Raval IH, Haldar S, Chatterjee PB (2015) Reporting a new siderophore based Ca2+ selective chemosensor that works as a staining agent in the live organism Artemia. Analyst 140(22):7799–7809

    CAS  PubMed  Google Scholar 

  • Raju M, Srivastava S, Nair RR, Raval IH, Haldar S, Chatterjee PB (2017) Siderophore coated magnetic iron nanoparticles: rational designing of water soluble nanobiosensor for visualizing Al3+ in live organism. Biosens Bioelectron 97:338–344

    CAS  PubMed  Google Scholar 

  • Rane M, Sayyed RZ, Chincholkar SB (2005) Methods for microbial iron chelator (siderophore) analysis. In: Podila GK (ed) Basic and applied research in mycorrhizae. IK International, New Delhi, pp 475–492

    Google Scholar 

  • Ruiz P, Balado M, Fuentes-Monteverde JC, Toranzo AE, Rodríguez J, Jiménez C, Avendaño-Herrera R, Lemos ML (2019) The Fish pathogen Vibrio ordalii under iron deprivation produces the siderophore piscibactin. Microorganisms 7(9):313

    CAS  PubMed Central  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109(10):4580–4595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasirekha B, Srividya S (2016) Siderophore production by Pseudomonas aeruginosa FP6, a biocontrol strain for Rhizoctonia solani and Colletotrichum gloeosporioides causing diseases in chilli. Agric Nat Resour 50(4):250–256

    CAS  Google Scholar 

  • Sayyed RZ, Seifi S, Patel PR, Shaikh SS, Jadhav HP, El Enshasy E (2019) Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environ Sustain 2:117–124

    CAS  Google Scholar 

  • Sazinas P, Hansen ML, Aune MI, Fischer MH, Jelsbak L (2019) A rare thioquinolobactin siderophore present in a bioactive Pseudomonas sp. DTU12.1. Genome Biol Evol 11(12):3529–3533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    CAS  PubMed  Google Scholar 

  • Schwabe R, Senges CHR, Bandow JE, Heine T, Lehmann H, Wiche O, Schlömann M, Levicán G, Tischler D (2020) Cultivation dependent formation of siderophores by Gordonia rubripertincta CWB2. Microbiol Res. https://doi.org/10.1016/j.micres.2020.126481

    Article  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    CAS  PubMed  Google Scholar 

  • Sharman GJ, Williams DH, Ewing DF, Ratledge C (1995) Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. Chem Biol 2(8):553–561

    CAS  PubMed  Google Scholar 

  • Singh A, Mishra AK (2015) Influence of various levels of iron and other abiotic factors on siderophorogenesis in paddy field cyanobacterium Anabaena oryzae. Appl Biochem Biotechnol 176(2):372–386

    CAS  PubMed  Google Scholar 

  • Sonnenschein EC, Stierhof M, Goralczyk S, Vabre FM, Pellissier L, Hanssen KØ, de la Cruz M, Díaz C, de Witte P, Copmans D, Andersen JH, Hansen E, Kristoffersen V, Tormo JR, Ebel R, Milne BF, Deng H, Gram L, Tabudravu JN (2017) Pseudochelin A, a siderophore of Pseudoalteromonas piscicida S2040. Tetrahedron 73(18):2633–2637

    CAS  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368

    CAS  PubMed  Google Scholar 

  • Takagi S (1976) Naturally occurring iron-chelating compounds in oat- and rice-root washing. Soil Sci Plant Nutr 22:423–433

    CAS  Google Scholar 

  • Tank N, Rajendran N, Patel B, Saraf M (2012) Evaluation and biochemical characterization of a distinctive pyoverdin from a Pseudomonas isolated from chickpea rhizosphere. Braz J Microbiol 43(2):639–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarapdar A, Norris JKS, Sampson O, Mukamolova G, Hodgkinson JT (2018) The design and synthesis of an antibacterial phenothiazine–siderophore conjugate. Beilstein J Org Chem 14:2646–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dong S, Nealson KH, West AJ (2019) The kinetics of siderophore-mediated olivine dissolution. Geobiology 17(4):401–416

    CAS  PubMed  Google Scholar 

  • Uranga CC, Arroyo P, Duggan BM, Gerwick WH, Edlund A (2020) Commensal oral Rothia mucilaginosa produces enterobactin, a metal-chelating siderophore. mSystems 5(2):e00161-e220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Velasquez I, Nunn BL, Ibisanmi E, Goodlett DR, Hunter KA, Sander SG (2011) Detection of hydroxamate siderophores in coastal and Sub-Antarctic waters off the south eastern coast of New Zealand. Mar Chem 126(1–4):97–107

    CAS  Google Scholar 

  • Venkat KS, Menon S, Agarwal H, Gopalakrishnan D (2017) Characterization and optimization of bacterium isolated from soil samples for the production of siderophores. Resour-Effic Technol 3(4):434–439

    Google Scholar 

  • Walker EL, Connolly E (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11(5):530–535

    CAS  PubMed  Google Scholar 

  • Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2009) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Biores Technol 100:2639–2641

    CAS  Google Scholar 

  • Weber T, Kim HU (2016) The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol 1(2):69–79

    PubMed  PubMed Central  Google Scholar 

  • Weber M, Taraz K, Budzikiewicz H, Geoffroy V, Meyer JM (2000) The structure of a pyoverdine from Pseudomonas sp. CFML 96.188 and its relation to other pyoverdines with a cyclic C-terminus. Biometals 13:301–309

    CAS  PubMed  Google Scholar 

  • Yan JX, Chevrette MG, Braun DR, Harper MK, Currie CR, Bugni TS (2019) Madurastatin D1 and D2, oxazoline containing siderophores isolated from an Actinomadura sp. Org Lett 21(16):6275–6279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu S, Teng C, Bai X, Liang J, Song T, Dong L, Jin Y, Qu J (2017) Optimization of siderophore production by Bacillus sp. PZ-1 and its potential enhancement of phytoextration of Pb from Soil. J Microbiol Biotechnol 27(8):1500–1512

    CAS  PubMed  Google Scholar 

  • Zajdowicz S, Haller JC, Krafft AE, Hunsucker SW, Mant CT, Duncan MW, Holmes RK (2012) Purification and structural characterization of siderophore (corynebactin) from Corynebacterium diphtheriae. PLoS ONE 7(4):e34591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai C, Summer D, Rangger C, Franssen GM, Laverman P, Haas H, Petrik M, Haubner R, Decristoforo C (2015) Novel bifunctional cyclic chelator for (89) Zr labeling-radiolabeling and targeting properties of RGD conjugates. Mol Pharm 12(6):2142–2150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ, Idowu T, Domalaon R, Schweizer F, Zhanel MA, Lagacé-Wiens PRS, Walkty AJ, Noreddin A, Lynch Iii JP, Karlowsky JA (2019) Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 79(3):271–289

    CAS  PubMed  Google Scholar 

  • Zhao W, Peng F, Wang CX, Xie Y, Lin R, Fang ZK, Sun F, Lian YY, Jiang H (2019) FW0622, a new siderophore isolated from marine Verrucosispora sp. by genomic mining. Nat Prod Res 10:1–7

    Google Scholar 

  • Zou G, Boyer GL (2005) Synthesis and properties of different metal complexes of the siderophore desferriferricrocin. Biometals 18:63–74

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors Pratika Singh, Azmi Khan, Ravinsh Kumar and Rakesh Kumar are thankful to the University Grants Commission, New Delhi for providing financial support as fellowship.

Funding

Authors Pratika Singh, Azmi Khan, Ravinsh Kumar and Rakesh Kumar are thankful to the University Grants Commission, New Delhi for providing financial support in the form of non-net fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Khan, A., Kumar, R. et al. Recent developments in siderotyping: procedure and application. World J Microbiol Biotechnol 36, 178 (2020). https://doi.org/10.1007/s11274-020-02955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02955-7

Keywords

Navigation