Skip to main content

Advertisement

Log in

In vitro and in silico studies on the structural and biochemical insight of anti-biofilm activity of andrograpanin from Andrographis paniculata against Pseudomonas aeruginosa

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial infections have become a global threat to drug-tolerant phenomena due to their biofilm formatting capacity. In many cases, conventional antimicrobial drugs fail to combat the infection, thus necessitating the discovery of some alternative medicine. Over several decades, plant metabolites have played a critical role in treating a broad spectrum of microbial infections due to its low cytotoxicity. Andrograpanin, a secondary metabolite, is a diterpenoid present in the leaf of Andrographis paniculata. In this study, andrograpanin (0.15 mM) exhibited significant inhibition on biofilm production by Pseudomonas aeruginosa in the presence of gentamicin (0.0084 mM). The impaired production of extracellular polymeric substances and several virulence factors of Pseudomonas aeruginosa were investigated to understand the mechanism of action mediated by andrograpanin. The structural alteration of biofilm was evaluated by using fluorescence microscopy, atomic force microscopy and field emission scanning electron microscopy. The in silico molecular simulation studies predicted interaction of andrograpanin with quorum sensing proteins such as RhlI, LasI, LasR, and swarming motility protein BswR of Pseudomonas aeruginosa. Overall the studies indicate that andrograpanin could be used as a therapeutic molecule against biofilm development by Pseudomonas aeruginosa.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abinaya M, Gayathri M (2019) Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3,5,7-trihydroxyflavone from Alstonia scholaris leaf against P. aeruginosa. Bioorg Chem 87:291–301

    CAS  PubMed  Google Scholar 

  • Andersson DI, Nicoloff H, Hjort K (2019) Mechanisms and clinical relevance of bacterial heteroresistance. Nat Rev Microbiol 17(8):479–496

    CAS  PubMed  Google Scholar 

  • Banerjee M, Moulick S, Bhattacharya KK, Parai D, Chattopadhyay S, Mukherjee SK (2017) Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microb Pathog 113:85–93

    CAS  PubMed  Google Scholar 

  • Barsoumian AE, Mende K, Sanchez CJ, Beckius ML, Wenke JC, Murray CK, Akers KS (2015) Clinical infectious outcomes associated with biofilm-related bacterial infections: a retrospective chart review. BMC Infect Dis 15(1):223

    PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. Apmis 121:1–58

    Google Scholar 

  • Bottomley MJ, Muraglia E, Bazzo R, Carfì A (2007) Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 282(18):13592–13600

    CAS  PubMed  Google Scholar 

  • Cepas V, López Y, Munoz E, Rolo D, Ardanuy C, Martí S, Xercavins M, Horcajada JP, Bosch J, Soto SM (2019) Relationship between biofilm formation and antimicrobial resistance in Gram-negative bacteria. Microb Drug Resist 25(1):72–79

    CAS  PubMed  Google Scholar 

  • Choudhury R, Majumder M, Roy DN, Basumallick S, Misra TK (2016) Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. Int Nano Lett 6(3):153–159

    CAS  Google Scholar 

  • Combrouse T, Sadovskaya I, Faille C, Kol O, Guérardel Y, Midelet-Bourdin G (2013) Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions. J Appl Microbiol 114(4):1120–1131

    CAS  PubMed  Google Scholar 

  • Costa OY, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    PubMed  PubMed Central  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta (BBA) 1830(6):3670–3695

    CAS  Google Scholar 

  • Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S (2016) Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep 6:23347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debnath B, Majumdar M, Bhowmik M, Bhowmik KL, Debnath A, Roy DN (2020) The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J Environ Manag 261:110235

    CAS  Google Scholar 

  • Diggle SP, Winzer K, Lazdunski A, Williams P, Cámara M (2002) Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol 184(10):2576–2586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881

    PubMed  PubMed Central  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey A, Marabotti A, Ramteke PW, Facchiano A (2016) Interaction of human chymase with ginkgolides, terpene trilactones of Ginkgo biloba investigated by molecular docking simulations. Biochem Biophys Res Commun 473(2):449–454

    CAS  PubMed  Google Scholar 

  • Dubey A, Dotolo S, Ramteke PW, Facchiano A, Marabotti A (2019) Searching for chymase inhibitors among chamomile compounds using a computational-based approach. Biomolecules 9(1):5

    Google Scholar 

  • Eliopoulos G, Moellering R Jr (1996). In: Lorian V (ed) Antimicrobial combinations. Antibiotics in laboratory medicine. Williams & Wilkins Co., Baltimore

    Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16(9):827–834

    CAS  PubMed  Google Scholar 

  • Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

    CAS  Google Scholar 

  • Ghosh S, Roy K, Pal C (2019) Terpenoids against infectious diseases. In: Terpenoids against human diseases. CRC Press, Boca Raton, pp 187–208

  • Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Mol Microbiol 53(4):1135–1146

    CAS  PubMed  Google Scholar 

  • Graves AP, Brenk R, Shoichet BK (2005) Decoys for docking. J Med Chem 48(11):3714–3728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez M, Choi MH, Tian B, Xu J, Rho JK, Kim MO, Cho Y-H, Yoon SC (2013) Simultaneous inhibition of rhamnolipid and polyhydroxyalkanoic acid synthesis and biofilm formation in Pseudomonas aeruginosa by 2-bromoalkanoic acids: effect of inhibitor alkyl-chain-length. PLoS ONE 8(9):e73986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haque M, Sartelli M, McKimm J, Bakar MA (2018) Health care-associated infections—an overview. Infect Drug Resist 11:2321

    PubMed  PubMed Central  Google Scholar 

  • Hu Y, Ulstrup J, Zhang J (2012) Bacterial biofilms investigated by atomic force microscopy and electrochemistry. DTU Chemistry, Kgs Lyngby

    Google Scholar 

  • Jung Y-G, Choi J, Kim S-K, Lee J-H, Kwon S (2015) Embedded biofilm, a new biofilm model based on the embedded growth of bacteria. Appl Environ Microbiol 81(1):211–219

    PubMed  Google Scholar 

  • Kan A, Birnbaum DP, Praveschotinunt P, Joshi NS (2019) Congo Red fluorescence for rapid in situ characterization of synthetic curli systems. Appl Environ Microbiol 85(13):e00434–e00419

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8(9):634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler E, Safrin M (1994) The propeptide of Pseudomonas aeruginosa elastase acts an elastase inhibitor. J Biol Chem 269(36):22726–22731

    CAS  PubMed  Google Scholar 

  • Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA (2015) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    PubMed  PubMed Central  Google Scholar 

  • Kumar L, Chhibber S, Harjai K (2013) Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73–78

    CAS  PubMed  Google Scholar 

  • Lázár V, Martins A, Spohn R, Daruka L, Grézal G, Fekete G, Számel M, Jangir PK, Kintses B, Csörgő B (2018) Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol 3(6):718

    PubMed  PubMed Central  Google Scholar 

  • Lee C, Lee S, Shin SG, Hwang S (2008) Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Appl Microbiol Biotechnol 78(2):371–376

    CAS  PubMed  Google Scholar 

  • Li H, Qin H, Wang W, Li G, Wu C, Song J (2006) Effect of andrographolide on QS regulating virulence factors production in Pseudomonas aeruginosa. China J Chin Mater Med 31(12):1015–1017

    CAS  Google Scholar 

  • Liu J, Wang Z-T, Ge B-X (2008) Andrograpanin, isolated from Andrographis paniculata, exhibits anti-inflammatory property in lipopolysaccharide-induced macrophage cells through down-regulating the p38 MAPKs signaling pathways. Int Immunopharmacol 8(7):951–958

    CAS  PubMed  Google Scholar 

  • Lu L, Hume ME, Pillai SD (2005) Autoinducer-2-like activity on vegetable produce and its potential involvement in bacterial biofilm formation on tomatoes. Foodborne Pathog Dis 2(3):242–249

    PubMed  Google Scholar 

  • Ma L, Liu X, Liang H, Che Y, Chen C, Dai H, Yu K, Liu M, Ma L, Yang C-H (2012) Effects of 14-alpha-lipoyl andrographolide on quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 56(12):6088–6094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maisuria VB, Lopez-de Los Santos Y, Tufenkji N, Déziel E (2016) Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep 6:30169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar M, Roy D (2019) Terpenoids: the biological key molecules. Taylor & Francis, Milton Park, pp 39–60

    Google Scholar 

  • Majumdar M, Biswas SC, Choudhury R, Upadhyay P, Adhikary A, Roy DN, Misra TK (2019a) Synthesis of gold nanoparticles using Citrus macroptera fruit extract: anti-biofilm and anticancer activity. ChemistrySelect 4(19):5714–5723

    CAS  Google Scholar 

  • Majumdar M, Misra TK, Roy DN (2019b) In vitro anti-biofilm activity of 14-deoxy-11,12-didehydroandrographolide from Andrographis paniculata against Pseudomonas aeruginosa. Braz J Microbiol 51(1):15–27

    PubMed  PubMed Central  Google Scholar 

  • Majumdar M, Khan SA, Biswas SC, Roy DN, Panja AS, Misra TK (2020) In vitro and in silico investigation of anti-biofilm activity of Citrus macroptera fruit extract mediated silver nanoparticles. J Mol Liq 302:112586

    CAS  Google Scholar 

  • Medina G, Juarez K, Díaz R, Soberón-Chávez G (2003) Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 149(11):3073–3081

    CAS  PubMed  Google Scholar 

  • Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39

    PubMed  PubMed Central  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL (2017) The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 13(7):e1006504

    PubMed  PubMed Central  Google Scholar 

  • Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niranjan Reddy V, Malla Reddy S, Ravikanth V, Krishnaiah P, Venkateshwar Goud T, Rao T, Siva Ram T, Gonnade RG, Bhadbhade M, Venkateswarlu Y (2005) A new bis-andrographolide ether from Andrographis paniculata nees and evaluation of anti-HIV activity. Nat Prod Res 19(3):223–230

    Google Scholar 

  • Olsson MH, Søndergaard CR, Rostkowski M, Jensen JH (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J Chem Theory Comput 7(2):525–537

    CAS  PubMed  Google Scholar 

  • Ooi JP, Kuroyanagi M, Sulaiman SF, Muhammad TST, Tan ML (2011) Andrographolide and 14-deoxy-11, 12-didehydroandrographolide inhibit cytochrome P450s in HepG2 hepatoma cells. Life Sci 88(9–10):447–454

    CAS  PubMed  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223–240

    CAS  PubMed  Google Scholar 

  • Parai D, Banerjee M, Dey P, Chakraborty A, Islam E, Mukherjee SK (2018) Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling 34(3):320–334

    CAS  PubMed  Google Scholar 

  • Patel JB (2017) Performance standards for antimicrobial susceptibility testing. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181(4):1203–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Powers RA, Morandi F, Shoichet BK (2002) Structure-based discovery of a novel, non-covalent inhibitor of AmpC β-lactamase. Structure 10(7):1013–1023

    CAS  PubMed  Google Scholar 

  • Priester JH, Horst AM, Van De Werfhorst LC, Saleta JL, Mertes LA, Holden PA (2007) Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68(3):577–587

    CAS  PubMed  Google Scholar 

  • Qais FA, Khan MS, Ahmad I (2019) Broad-spectrum quorum sensing and biofilm inhibition by green tea against Gram-negative pathogenic bacteria: deciphering the role of phytocompounds through molecular modelling. Microb Pathog 126:379–392

    CAS  PubMed  Google Scholar 

  • Repasky MP, Shelley M, Friesner RA (2007) Flexible ligand docking with Glide. Curr Protoc Bioinform 18(1):8 (11-18.12. 36)

    Google Scholar 

  • Roy B, Bharali P, Konwar BK, Karak N (2013) Silver-embedded modified hyperbranched epoxy/clay nanocomposites as antibacterial materials. Bioresour Technol 127:175–180

    CAS  PubMed  Google Scholar 

  • Roy DN, Mandal S, Sen G, Mukhopadhyay S, Biswas T (2010) 14-Deoxyandrographolide desensitizes hepatocytes to tumour necrosis factor-alpha-induced apoptosis through calcium-dependent tumour necrosis factor receptor superfamily member 1A release via the NO/cGMP pathway. Brit J Pharmacol 160(7):1823–1843

    CAS  Google Scholar 

  • Roy DN, Sen G, Chowdhury KD, Biswas T (2011) Combination therapy with andrographolide and D-penicillamine enhanced therapeutic advantage over monotherapy with D-penicillamine in attenuating fibrogenic response and cell death in the periportal zone of liver in rats during copper toxicosis. Toxicol Appl Pharmacol 250(1):54–68

    CAS  PubMed  Google Scholar 

  • Saini R, Saini S, Sharma S (2011) Biofilm: a dental microbial infection. J Nat Sci Biol Med 2(1):71

    PubMed  PubMed Central  Google Scholar 

  • Schillaci D, Cusimano MG, Cunsolo V, Saletti R, Russo D, Vazzana M, Vitale M, Arizza V (2013) Immune mediators of sea-cucumber Holothuria tubulosa (Echinodermata) as source of novel antimicrobial and anti-staphylococcal biofilm agents. AMB Express 3(1):35

    PubMed  PubMed Central  Google Scholar 

  • Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software proGram for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21(12):681–691

    CAS  PubMed  Google Scholar 

  • Simoes M, Bennett RN, Rosa EA (2009) Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 26(6):746–757

    CAS  PubMed  Google Scholar 

  • Singha PK, Roy S, Dey S (2003) Antimicrobial activity of Andrographis paniculata. Fitoterapia 74(7–8):692–694

    PubMed  Google Scholar 

  • Soni KA, Lu L, Jesudhasan PR, Hume ME, Pillai SD (2008) Influence of autoinducer-2 (AI-2) and beef sample extracts on E. coli O157:H7 survival and geen expression of virulence gene yadK and hhA. J Food Sci 73(3):M135–M139

    CAS  PubMed  Google Scholar 

  • Soto SM (2013) Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4(3):223–229

    PubMed  PubMed Central  Google Scholar 

  • Toder D, Gambello M, Iglewski B (1991) Pseudomonas aeruginosa LasA: a second elastase under the transcriptional control of lasR. Mol Microbiol 5(8):2003–2010

    CAS  PubMed  Google Scholar 

  • Wallis C, Melnick JL, Longoria CJ (1981) Colorimetric method for rapid determination of bacteriuria. J Clin Microbiol 14(3):342–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Ye F, Kumar V, Gao Y-G, Zhang L-H (2014) BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ. Nucleic Acids Res 42(7):4563–4576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill ME (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9(3):685–694

    CAS  PubMed  Google Scholar 

  • Wu Y-Q, Shan H-W, Zhao X-Y, Yang X-Y (2011) Nosocomial infection caused by Pseudomonas aeruginosa in intensive care unit. Chin Crit Care Med 23(2):88–90

    Google Scholar 

Download references

Acknowledgements

This work is supported by a Project Grant (File Number: YSS/2015/001965) to DNROY from Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India. MM is thankful to the National Institute of Technology, Agartala, for providing Ph.D. fellowship. Authors appreciate the facility of Atomic Force Microscopy (AFM) at Central Research Facility (CRF), National Institute of Technology Agartala. AD is thankful to ICMR, Govt. of India, for providing postdoctoral research fellowship. Real-Time PCR experiment was performed at the School of Bioscience, Indian Institute of Technology Kharagpur, and Fluorescence Microscope and FE-SEM were conducted at Tripura University, Tripura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dijendra Nath Roy.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3055.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, M., Dubey, A., Goswami, R. et al. In vitro and in silico studies on the structural and biochemical insight of anti-biofilm activity of andrograpanin from Andrographis paniculata against Pseudomonas aeruginosa. World J Microbiol Biotechnol 36, 143 (2020). https://doi.org/10.1007/s11274-020-02919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02919-x

Keywords

Navigation