Biotreatment of high-salinity wastewater: current methods and future directions

Abstract

Saline wastewaters are usually generated by various industries, including the chemical, pharmaceutical, agricultural, and aquacultural industries. The discharge of untreated high-salinity wastewater may cause serious environmental pollution and damage the aquatic, terrestrial, and wetland ecosystems. For many countries, the treatment of saline wastewater has become an important task. Generally, saline wastewaters are treated through physical and chemical methods. However, these traditional techniques are associated with higher treatment costs and the generation of byproducts. In contrast, biotreatment techniques are environmentally friendly and inexpensive. This review highlights the sources and environmental concerns of high-salinity wastewater and illustrates the latest problems and solutions to the use of biological approaches for treating saline wastewater. Although high salinity may inhibit the effectiveness of aerobic and anaerobic biological wastewater treatment methods, such strategies as selecting salt-adapted microorganisms capable of degrading pollutants with tolerance to high salinity and optimizing operating conditions can be effective. This mini-review may serve as a reference for future efforts to treat high-salinity wastewater.

This is a preview of subscription content, log in to check access.

Fig. 1

Source and entry pathway of high salinity wastewater in the environment

References

  1. Abdel Wahed MSM, Mohamed EA, Wolkersdorfer C, El-Sayed MI, M’nif A, Sillanpää M (2015) Assessment of water quality in surface waters of the Fayoum watershed. Egypt Environ Earth Sci 74:1765–1783. https://doi.org/10.1007/s12665-015-4186-0

    CAS  Article  Google Scholar 

  2. Abou-Elela SI, Kamel MM, Fawzy ME (2010) Biological treatment of saline wastewater using a salt-tolerant microorganism. Desalination 250:1–5. https://doi.org/10.1016/j.desal.2009.03.022

    CAS  Article  Google Scholar 

  3. Akan JC, Moses VOO, Abah J (2007) Assessment of tannery industrial effluents from Kano metropolis, Kano state, Nigeria. J Appl Sci 7:2788–2793. https://doi.org/10.3923/jas.2007.2788.2793

    CAS  Article  Google Scholar 

  4. Aloui F, Khoufi S, Loukil S, Sayadi S (2009) Performances of an activated sludge process for the treatment of fish processing saline wastewater. Desalination 246:389–396. https://doi.org/10.1016/j.desal.2008.03.062

    CAS  Article  Google Scholar 

  5. Aslan S, Simsek E (2012) Influence of salinity on partial nitrification in a submerged biofilter. Bioresour Technol 118:24–29. https://doi.org/10.1016/j.biortech.2012.05.057

    CAS  Article  PubMed  Google Scholar 

  6. Bengtsson S, de Blois M, Wilen BM, Gustavsson D (2019) A comparison of aerobic granular sludge with conventional and compact biological treatment technologies. Environ Technol 40:2769–2778. https://doi.org/10.1080/09593330.2018.1452985

    CAS  Article  PubMed  Google Scholar 

  7. Beun JJ, Hendriks A, Van Loosdrecht MC, Morgenroth E, Wilderer PA, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33:2283–2290. https://doi.org/10.1016/S0043-1354(98)00463-1

    CAS  Article  Google Scholar 

  8. Boujida N, Palau M, Charfi S, El Moussaoui N, Manresa A, Minana-Galbis D, Senhaji NS, Abrini J (2018) Isolation and characterization of halophilic bacteria producing exopolymers with emulsifying and antioxidant activities. Bioc Agric Biotechnol 16:631–637. https://doi.org/10.1016/j.bcab.2018.10.015

    Article  Google Scholar 

  9. Calheiros CS, Quiterio PV, Silva G, Crispim LF, Brix H, Moura SC, Castro PM (2012) Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater. J Environ Manag 95:66–71. https://doi.org/10.1016/j.jenvman.2011.10.003

    CAS  Article  Google Scholar 

  10. Calheiros CSC, Teixeira A, Pires C, Franco AR, Duque AF, Crispim LFC, Moura SC, Castro PML (2010) Bacterial community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing. Water Res 44:5032–5038. https://doi.org/10.1016/j.watres.2010.07.017

    CAS  Article  PubMed  Google Scholar 

  11. Carrera P, Campo R, Mendez R, Di Bella G, Campos JL, Mosquera-Corral A, Val Del Rio A (2019) Does the feeding strategy enhance the aerobic granular sludge stability treating saline effluents? Chemosphere 226:865–873. https://doi.org/10.1016/j.chemosphere.2019.03.127

    CAS  Article  PubMed  Google Scholar 

  12. Cassel F, Sharma S (2018) Delocalization of salt solution in a semiarid farmland topsoil. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3905-z

    Article  Google Scholar 

  13. Chen GH, Chui HK, Wong CL, Tang DTW, Lu H, Jiang F, van Loosdrecht MC (2012) An innovative triple water supply system and a novel SANI® process to alleviate water shortage and pollution problem for water-scarce coastal areas in China. J Water Sustain 2:121–129

    CAS  Google Scholar 

  14. Chung J, Shin S, Oh J (2009) Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity. Biotechnol Lett 31:959–966. https://doi.org/10.1007/s10529-009-9960-1

    CAS  Article  PubMed  Google Scholar 

  15. Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuna-Gonzalez J (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608. https://doi.org/10.1038/nature01526

    CAS  Article  PubMed  Google Scholar 

  16. di Biase A, Wei V, Kowalski MS, Bratty M, Hildebrand M, Jabari P, Oleszkiewicz JA (2020) Ammonia, thicyanate, and cyanate removal in an aerobic up-flow submerged attached growth reactor treating gold mine wastewater. Chemosphere 243:125395. https://doi.org/10.1016/j.chemosphere.2019.125395

    CAS  Article  PubMed  Google Scholar 

  17. Ezekwe IC, Ezekwe AS, Chima GN (2013) Metal loadings and alkaline mine drainage from active and abandoned mines in the Ivo River basin area of Southeastern Nigeria. Mine Water Environ 32:97–107. https://doi.org/10.1007/s10230-013-0220-1

    CAS  Article  Google Scholar 

  18. Fabiani C, Ruscio F, Spadoni M, Pizzichini M (1996) Chromium (III) salts recovery process from tannery wastewaters. Desalination 108:183–191. https://doi.org/10.1016/S0011-9164(97)00026-X

    Article  Google Scholar 

  19. Fang H, Liu G, Kearney M (2005) Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environ Manag 35:72–83. https://doi.org/10.1007/s00267-004-3066-2

    Article  Google Scholar 

  20. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. https://doi.org/10.1016/j.aquatox.2005.09.009

    CAS  Article  PubMed  Google Scholar 

  21. Ge CH, Dong Y, Li H, Li Q, Ni SQ, Gao B, Xu S, Qiao Z, Ding S (2019) Nitritation-anammox process—a realizable and satisfactory way to remove nitrogen from high saline wastewater. Bioresour Technol 275:86–93. https://doi.org/10.1016/j.biortech.2018.12.032

    CAS  Article  PubMed  Google Scholar 

  22. Gonzalez-Silva BM, Ronning AJ, Andreassen IK, Bakke I, Cervantes FJ, Østgaard K, Vadstein O (2017) Changes in the microbial community of an anammox consortium during adaptation to marine conditions revealed by 454 pyrosequencing. Appl Microbiol Biot 101:5149–5162. https://doi.org/10.1007/s00253-017-8160-5

    CAS  Article  Google Scholar 

  23. Guo J, Zhou J, Wang D, Tian C, Wang P, Uddin MS (2008) A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation 19(1):15–19. https://doi.org/10.1007/s10532-007-9110-1

    CAS  Article  PubMed  Google Scholar 

  24. Hamoda MF, Al-Attar IMS (1995) Effects of high sodium chloride concentrations on activated sludge treatment. Water Sci Technol 31:61–72. https://doi.org/10.1016/0273-1223(95)00407-e

    CAS  Article  Google Scholar 

  25. Hossain L, Sarker SK, Khan MS (2018) Evaluation of present and future wastewater impacts of textile dyeing industries in Bangladesh. Environ Dev 26:23–33. https://doi.org/10.1016/j.envdev.2018.03.005

    Article  Google Scholar 

  26. Hou M, Li W, Li H, Li C, Wu X, Liu Y (2019) Performance and bacterial characteristics of aerobic granular sludge in response to alternating salinity. Int Biodeter Biodegr 142:211–217. https://doi.org/10.1016/j.ibiod.2019.05.007

    CAS  Article  Google Scholar 

  27. Hu Q, Yang Y, Han S, Wang J (2019) Degradation of agricultural drainage water quantity and quality due to farmland expansion and water-saving operations in arid basins. Agr Water Manag 213:185–192. https://doi.org/10.1016/j.agwat.2018.10.019

    Article  Google Scholar 

  28. Huang JL, Wang HH, Alam F, Cui YW (2019) Granulation of halophilic sludge inoculated with estuarine sediments for saline wastewater treatment. Sci Total Environ 682:532–540. https://doi.org/10.1016/j.scitotenv.2019.05.197

    CAS  Article  PubMed  Google Scholar 

  29. Hulsen T, Hsieh K, Batstone DJ (2019) Saline wastewater treatment with purple phototrophic bacteria. Water Res 160:259–267. https://doi.org/10.1016/j.watres.2019.05.060

    CAS  Article  PubMed  Google Scholar 

  30. Jadeja RN, Tewari A (2007) Effect of soda ash industry effluent on bioaccumulation of metals by seaweeds of coastal region of Gujarat, India. J Hazard Mater 147:148–154. https://doi.org/10.1016/j.jhazmat.2006.12.060

    CAS  Article  PubMed  Google Scholar 

  31. Jesus JM, Calheiros CS, Castro PM, Borges MT (2014) Feasibility of Typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systems. Int J Phytoremediat 16:334–346. https://doi.org/10.1080/15226514.2013.773284

    CAS  Article  Google Scholar 

  32. Jesus JM, Cassoni AC, Danko AS, Fiuza A, Borges MT (2017) Role of three different plants on simultaneous salt and nutrient reduction from saline synthetic wastewater in lab-scale constructed wetlands. Sci Total Environ 579:447–455. https://doi.org/10.1016/j.scitotenv.2016.11.074

    CAS  Article  PubMed  Google Scholar 

  33. Jin RC, Ma C, Mahmood Q, Yang GF, Zheng P (2011) Anammox in a UASB reactor treating saline wastewater. Process Saf Environ 89:342–348. https://doi.org/10.1016/j.psep.2011.05.001

    CAS  Article  Google Scholar 

  34. Kakavandi B, Ahmadi M (2019) Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process. Ultrason Sonochem 56:25–36. https://doi.org/10.1016/j.ultsonch.2019.03.005

    CAS  Article  PubMed  Google Scholar 

  35. Karimov A, Qadir M, Noble A, Vyshpolsky F, Anzelm K (2009) Development of magnesium-dominant soils under irrigated agriculture in Southern Kazakhstan. Pedosphere 19:331–343. https://doi.org/10.1016/S1002-0160(09)60124-7

    CAS  Article  Google Scholar 

  36. Kartal B, Koleva M, Arsov R, van der Star W, Jetten MS, Strous M (2006) Adaptation of a freshwater anammox population to high salinity wastewater. J Biotechnol 126:546–553. https://doi.org/10.1016/j.jbiotec.2006.05.012

    CAS  Article  PubMed  Google Scholar 

  37. Kuypers MMM, Sliekers AO, Lavik G, Schmid M, Jorgensen BB, Kuenen JG, Sinninghe Damste JS, Strous M, Jetten MSM (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611. https://doi.org/10.1038/nature01472

    CAS  Article  PubMed  Google Scholar 

  38. Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutiérrez D, Amann R, Jetten MSM, Kuypers MMM, Kari DM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106:4752–4757. https://doi.org/10.1073/pnas.0812444106

    Article  PubMed  Google Scholar 

  39. Lee KY, Kim KW, Park M, Kim J, Oh M, Lee EH, Chuang DY, Moon JK (2016) Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater. Water Res 95:134–141. https://doi.org/10.1016/j.watres.2016.02.052

    CAS  Article  PubMed  Google Scholar 

  40. Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40:3671–3682. https://doi.org/10.1016/j.watres.2006.08.027

    CAS  Article  PubMed  Google Scholar 

  41. Lefebvre O, Vasudevan N, Torrijos M, Thanasekaran K, Moletta R (2005) Halophilic biological treatment of tannery soak liquor in a sequencing batch reactor. Water Res 39:1471–1480. https://doi.org/10.1016/j.watres.2004.12.038

    CAS  Article  PubMed  Google Scholar 

  42. Lefebvre O, Vasudevan N, Torrijos M, Thanasekaran K, Moletta R (2006) Anaerobic digestion of tannery soak liquor with an aerobic post-treatment. Water Res 40:1492–1500. https://doi.org/10.1016/j.watres.2006.02.004

    CAS  Article  PubMed  Google Scholar 

  43. Li B (2010) Soil salinization. Desertification and its control in China. Springer, Berlin, pp 263–298

    Google Scholar 

  44. Li J, Feng L, Qiang Z, Dong H, Wang D (2018a) Enhanced performance and kinetics of marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Mn (II) and Ni (II) addition. Bioresour Technol 249:1085–1091. https://doi.org/10.1016/j.biortech.2017.10.101

    CAS  Article  PubMed  Google Scholar 

  45. Li J, Qi P, Qiang Z, Dong H, Gao D, Wang D (2018b) Is anammox a promising treatment process for nitrogen removal from nitrogen-rich saline wastewater? Bioresour Technol 270:722–731. https://doi.org/10.1016/j.biortech.2018.08.115

    CAS  Article  PubMed  Google Scholar 

  46. Li Y, Wang Y, Gao Y, Zhao H, Zhou W (2018c) Seawater toilet flushing sewage treatment and nutrients recovery by marine bacterial-algal mutualistic system. Chemosphere 195:70–79. https://doi.org/10.1016/j.chemosphere.2017.12.076

    CAS  Article  PubMed  Google Scholar 

  47. Liang Y, Zhu H, Bañuelos G, Yan B, Zhou Q, Yu X, Cheng X (2017) Constructed wetlands for saline wastewater treatment: a review. Ecol Eng 98:275–285. https://doi.org/10.1016/j.ecoleng.2016.11.005

    Article  Google Scholar 

  48. Liang Y, Cheng X, Zhu H, Shutes B, Yan B, Zhou Q, Yu X (2018) Historical Evolution of Mariculture in China During Past 40 Years and Its Impacts on Eco-environment. Chin Geogr Sci 28:363–373. https://doi.org/10.1007/s11769-018-0940-z

    Article  Google Scholar 

  49. Liu X, Dai J, Wu D, Jiang F, Chen G, Chui H-K, van Loosdrecht MCM (2016) Sustainable application of a novel water Cycle using seawater for toilet flushing. Engineering 2:460–469. https://doi.org/10.1016/j.eng.2016.04.013

    Article  Google Scholar 

  50. Lutz BD, Lewis AN, Doyle MW (2013) Generation, transport, and disposal of wastewater associated with Marcellus Shale gas development. Water Resour Res 49:647–656. https://doi.org/10.1002/wrcr.20096

    CAS  Article  Google Scholar 

  51. Maharja P, Mahesh M, Chitra C, Kalaivani D, Srividya R, Swarnalatha S, Sekaran G (2017) Sequential oxic-anoxic bio reactor for the treatment of tannery saline wastewater using halophilic and filamentous bacteria. J Water Process Eng 18:47–57. https://doi.org/10.1016/j.jwpe.2017.03.011

    Article  Google Scholar 

  52. Missimer TM, Maliva RG (2018) Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 434:198–215. https://doi.org/10.1016/j.desal.2017.07.012

    CAS  Article  Google Scholar 

  53. Mokashe N, Chaudhari B, Patil U (2018) Operative utility of salt-stable proteases of halophilic and halotolerant bacteria in the biotechnology sector. Int J Biol Macromol 117:493–522. https://doi.org/10.1016/j.ijbiomac.2018.05.217

    CAS  Article  PubMed  Google Scholar 

  54. Mukhtar S, Ahmad S, Bashir A, Mehnaz S, Mirza MS, Malik KA (2019) Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 228:126307. https://doi.org/10.1016/j.micres.2019.126307

    CAS  Article  PubMed  Google Scholar 

  55. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184. https://doi.org/10.1016/0168-6496(94)00081-7

    CAS  Article  Google Scholar 

  56. Muñoz Sierra JD, Oosterkamp MJ, Wang W, Spanjers H, van Lier JB (2019) Comparative performance of upflow anaerobic sludge blanket reactor and anaerobic membrane bioreactor treating phenolic wastewater: Overcoming high salinity. Chem Eng J 366:480–490. https://doi.org/10.1016/j.cej.2019.02.097

    CAS  Article  Google Scholar 

  57. Na L, Genxu W, Guangsheng L, Yun L, Xiangyang S (2013) The ecological implications of land use change in the Source Regions of the Yangtze and Yellow Rivers, China. Reg Environ Change 13:1099–1108. https://doi.org/10.1007/s10113-013-0419-5

    Article  Google Scholar 

  58. Nakajima J, Sakka M, Kimura T, Furukawa K, Sakka K (2008) Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor. Appl Microbiol Biot 77:1159–1166. https://doi.org/10.1007/s00253-007-1247-7

    CAS  Article  Google Scholar 

  59. Nath A (2016) Insights into the sequence parameters for halophilic adaptation. Amino Acids 48:751–762. https://doi.org/10.1007/s00726-015-2123-x

    CAS  Article  PubMed  Google Scholar 

  60. Navada S, Vadstein O, Tveten A-K, Verstege GC, Terjesen BF, Mota VC, Venkataraman V, Gaument F, Mikkelsen O, Kamstra A (2019) Influence of rate of salinity increase on nitrifying biofilms. J Clean Prod 238:117835. https://doi.org/10.1016/j.jclepro.2019.117835

    CAS  Article  Google Scholar 

  61. Ng KK, Shi X, Tang MKY, Ng HY (2014) A novel application of anaerobic bio-entrapped membrane reactor for the treatment of chemical synthesis-based pharmaceutical wastewater. Sep Purif Technol 132:634–643. https://doi.org/10.1016/j.seppur.2014.06.021

    CAS  Article  Google Scholar 

  62. Patel VK, Srivastava R, Sharma A, Srivastava AK, Singh S, Srivastava AK, Kashyap PL, Chakdar H, Pandiyan K, Kalra A, Saxena AK (2018) Halotolerant Exiguobacterium profundum PHM11 tolerate salinity by accumulating L-proline and fine-tuning gene expression profiles of related metabolic pathways. Front Microbiol 9:423. https://doi.org/10.3389/fmicb.2018.00423

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pernetti M, Di Palma L (2005) Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environ Technol 26:695–703. https://doi.org/10.1080/09593330.2001.9619509

    CAS  Article  PubMed  Google Scholar 

  64. Pollice A, Rozzi A, Tomei MC, Di Pinto AC, Limoni N (2010) Monitoring the inhibitory effect of NaCl on anaerobic wastewater treatment processes by the Rantox biosensor. Environ Technol 21:535–544. https://doi.org/10.1080/09593332408618095

    Article  Google Scholar 

  65. Pronk M, Bassin JP, de Kreuk MK, Kleerebezem R, van Loosdrecht MC (2014) Evaluating the main and side effects of high salinity on aerobic granular sludge. Appl Microbiol Biot 98:1339–1348. https://doi.org/10.1007/s00253-013-4912-z

    CAS  Article  Google Scholar 

  66. Ramaswami S, Jalal Uddin FM, Behrendt J, Otterpohl R (2019) High-rate nitrification of saline wastewaters using fixed-bed reactors. J Environ Manag 243:444–452. https://doi.org/10.1016/j.jenvman.2019.05.020

    CAS  Article  Google Scholar 

  67. Reitner J, Thiel V (2011) Anammox. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 53–53

    Google Scholar 

  68. Rios-Del Toro EE, López-Lozano NE, Cervantes FJ (2017) Up-flow anaerobic sediment trapped (UAST) reactor as a new configuration for the enrichment of anammox bacteria from marine sediments. Bioresour Technol 238:528–533. https://doi.org/10.1016/j.biortech.2017.04.087

    CAS  Article  PubMed  Google Scholar 

  69. Setati ME (2010) Diversity and industrial potential of hydrolase producing halophilic/halotolerant eubacteria. Afr J Biotechnol 9(11):1555–1560. https://doi.org/10.5897/AJB10.051

    CAS  Article  Google Scholar 

  70. Sharma A, Vaishnav A, Jamali H, Srivastava AK, Saxena AK, Srivastava AK (2016) Halophilic Bacteria: Potential Bioinoculants for Sustainable Agriculture and Environment Management Under Salt Stress. In: Choudhary D, Varma A, Tuteja N (eds) Plant–microbe interaction: an approach to sustainable agriculture. Springer, Singapore, pp 297–325

    Google Scholar 

  71. She Z, Zhao L, Zhang X, Jin C, Guo L, Yang S, Zhao Y, Gao M (2016) Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater. Chem Eng J 288:207–215. https://doi.org/10.1016/j.cej.2015.11.102

    CAS  Article  Google Scholar 

  72. Shi X, Lefebvre O, Ng KK, Ng HY (2014) Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour Technol 153:79–86. https://doi.org/10.1016/j.biortech.2013.11.045

    CAS  Article  PubMed  Google Scholar 

  73. Singh S, Sran KS, Pinnaka AK, Choudhury AR (2019) Purification, characterization and functional properties of exopolysaccharide from a novel halophilic Natronotalea sambharensis sp. nov. Int J Biol Macromol 136:547–558. https://doi.org/10.1016/j.ijbiomac.2019.06.080

    CAS  Article  PubMed  Google Scholar 

  74. Soda S, Kashiwa M, Kagami T, Kuroda M, Yamashita M, Ike M (2011) Laboratory scale bioreactors for soluble selenium removal from selenium refinery wastewater using anaerobic sludge. Desalination 279(1–3):433–438. https://doi.org/10.1016/j.desal.2011.06.031

    CAS  Article  Google Scholar 

  75. Street TO, Bolen DW, Rose GD (2006) A molecular mechanism for osmolyte-induced protein stability. Proc Natl Acad Sci USA 103(38):13997–14002. https://doi.org/10.1073/pnas.0606236103

    CAS  Article  PubMed  Google Scholar 

  76. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biot 50:589–596. https://doi.org/10.1007/s002530051340

    CAS  Article  Google Scholar 

  77. Tan S, Cui C, Hou Y, Chen X, Xu A, Li W, You H (2017) Cultivation of activated sludge using sea mud as seed to treat industrial phenolic wastewater with high salinity. Mar Pollut Bull 114(2):867–870. https://doi.org/10.1016/j.marpolbul.2016.11.026

    CAS  Article  PubMed  Google Scholar 

  78. Tan X, Acquah I, Liu H, Li W, Tan S (2019) A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective. Chemosphere 220:1150–1162. https://doi.org/10.1016/j.chemosphere.2019.01.027

    CAS  Article  Google Scholar 

  79. Voutchkov N (2018) Energy use for membrane seawater desalination—current status and trends. Desalination 431:2–14. https://doi.org/10.1016/j.desal.2017.10.033

    CAS  Article  Google Scholar 

  80. Wei Y, Zhang SH (2018) Abiostress resistance and cellulose degradation abilities of haloalkaliphilic fungi: applications for saline-alkaline remediation. Extremophiles 22:155–164. https://doi.org/10.1007/s00792-017-0986-3

    CAS  Article  PubMed  Google Scholar 

  81. Wu X, Du YG, Qu Y, Du DY (2013) Ternary cycle treatment of high saline wastewater from pesticide production using a salt-tolerant microorganism. Water Sci Technol 67:1960–1966. https://doi.org/10.2166/wst.2013.072

    CAS  Article  PubMed  Google Scholar 

  82. Xiang JH (2007) Mariculture-related environmental concerns in the People's Republic of China. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Methods and technologies in fish biology and fisheries, vol 6. Springer, Dordrecht, pp 219–228

    Google Scholar 

  83. Xiao Y, Roberts DJ (2010) A review of anaerobic treatment of saline wastewater. Environ Technol 31:1025–1043. https://doi.org/10.1080/09593331003734202

    CAS  Article  PubMed  Google Scholar 

  84. Xu F, Ouyang DL, Rene ER, Ng HY, Guo LL, Zhu YJ, Zhou LL, Yuan Q, Miao MS, Wang Q, Kong Q (2019) Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater. Bioresour Technol 288:121462. https://doi.org/10.1016/j.biortech.2019.121462

    CAS  Article  PubMed  Google Scholar 

  85. Xu H, Yang B, Liu Y, Li F, Shen C, Ma C, Tian Q, Song X, Sand W (2018) Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: a mini-review. World J Microb Biot 34:165. https://doi.org/10.1007/s11274-018-2548-y

    CAS  Article  Google Scholar 

  86. Yan ZQ, Zeng LM, Li Q, Liu TY, Matsuyama H, Wang XL (2016) Selective separation of chloride and sulfate by nanofiltration for high saline wastewater recycling. Sep Purif Technol 166:135–141. https://doi.org/10.1016/j.seppur.2016.04.009

    CAS  Article  Google Scholar 

  87. Yang J, Zhang S, Li Y, Bu K, Zhang Y, Chang L, Zhang Y (2010) Dynamics of saline-alkali land and its ecological regionalization in western Songnen Plain, China. Chin Geogr Sci 20:159–166. https://doi.org/10.1007/s11769-010-0159-0

    Article  Google Scholar 

  88. Yang YN, Sheng Q, Zhang L, Kang HQ, Liu Y (2015) Desalination of saline farmland drainage water through wetland plants. Agr Water Manag 156:19–29. https://doi.org/10.1016/j.agwat.2015.03.001

    Article  Google Scholar 

  89. Ye G, Yu Z, Li Y, Li L, Song L, Gu L, Cao X (2019) Efficient treatment of brine wastewater through a flow-through technology integrating desalination and photocatalysis. Water Res 157:134–144. https://doi.org/10.1016/j.watres.2019.03.058

    CAS  Article  PubMed  Google Scholar 

  90. Zhang L, Fu G, Zhang Z (2019a) Electricity generation and microbial community in long-running microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioelectrochemistry 126:20–28. https://doi.org/10.1016/j.bioelechem.2018.11.002

    CAS  Article  PubMed  Google Scholar 

  91. Zhang Y, Kuroda M, Arai S, Kato F, Inoue D, Ike M (2019b) Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Res 154:327–335. https://doi.org/10.1016/j.watres.2019.01.059

    CAS  Article  PubMed  Google Scholar 

  92. Zhang Y, Kuroda M, Nakatani Y, Soda S, Ike M (2019c) Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors. J Biosci Bioeng 127:618–624. https://doi.org/10.1016/j.jbiosc.2018.11.002

    CAS  Article  PubMed  Google Scholar 

  93. Zhao Y, Park HD, Park JH, Zhang F, Chen C, Li X, Zhao D, Zhao F (2016) Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. Bioresour Technol 216:808–816. https://doi.org/10.1016/j.biortech.2016.06.032

    CAS  Article  PubMed  Google Scholar 

  94. Zhuang X, Han Z, Bai Z, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126. https://doi.org/10.1016/j.envpol.2010.01.007

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Ian Maddox for the invitation and encouragement to submit this paper.

Funding

This study was supported by the National Natural Science Foundation of China (21777086), Taishan Scholars Program of Shandong Province (tsqn201909005), Key Research & Developmental Program of Shandong Province (2019JZZY020308), the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (ES201801), Natural Science Foundation for Distinguished Young Scholars of Shandong Province (JQ201809), Young Scholars Program of Shandong University (2016WLJH16, 2020QNQT012), Shandong Provincial Water Conservancy Research and Technology Promotion Project (SDSLKY201802), CNPC Research Institute of Safety and Environmental Technology, and China Association of Marine Affairs (CAMA) and Association of Ocean of China (AOC) (CAMAJJ201808).

Author information

Affiliations

Authors

Contributions

YZ, XZ and S-QN wrote the paper; SA, SS and S-QN revised the paper.

Corresponding author

Correspondence to Shou-Qing Ni.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhuang, X., Ahmad, S. et al. Biotreatment of high-salinity wastewater: current methods and future directions. World J Microbiol Biotechnol 36, 37 (2020). https://doi.org/10.1007/s11274-020-02815-4

Download citation

Keywords

  • Biotechnology
  • High-salinity wastewater
  • Biological reactors
  • Halophilic microorganisms