Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development

Abstract

Microbial secondary metabolites (SMs) have been identified as an important natural source of drugs for several metabolic and neurological diseases. Along with biomedical applications, SMs are also used in the food and biochemical industries. SMs include natural products such as pigments, alkaloids, toxins, antimicrobials obtained from cultured microorganisms, while other non-cultivable microorganisms have also acted as a rich source of SMs. But, the isolation of SMs from these sources is a very tedious task. Metabolomics provides complete identification and structural information about the entire cellular metabolome under specific conditions using highly sophisticated instrumentation. Further, gene editing techniques such as cloning and gene refactoring, including advanced CRISPR-Cas, can be used for engineering microbes that have the potential to produce natural SMs that were not produced in native microbial strain. The present review describes integrated metabolomics and gene editing approaches for the synthesis of novel microbial SMs and their potential application towards drug discovery and development.

Graphical abstract

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alvarez-Rivera G, Ballesteros-Vivas D, Parada-Alfonso F, Ibañez E, Cifuentes A (2019) Recent applications of high resolution mass spectrometry for the characterization of plant natural products. Trends Anal Chem 112:87–101

    CAS  Google Scholar 

  2. Antón J, Lucio M, Peña A, Cifuentes A, Brito-Echeverría J, Moritz F, Tziotis D, López C, Urdiain M, Schmitt-Kopplin P, Rosselló-Móra R (2013) High metabolomic microdiversity within co-occurring isolates of the extremely halophilic bacterium Salinibacter ruber. PLoS ONE 8(5):e64701

    PubMed  PubMed Central  Google Scholar 

  3. Baidoo EEK (2019) Microbial metabolomics: a general overview. Methods Mol Biol 1859:1–8

    CAS  PubMed  Google Scholar 

  4. Bauman KD, Li J, Murata K, Mantovani SM, Dahesh S, Nizet V, Luhavaya H, Moore BS (2019) Refactoring the cryptic streptophenazine biosynthetic gene cluster unites phenazine, polyketide, and nonribosomal peptide biochemistry. Cell Chem Biol 26:724–736

    CAS  PubMed  Google Scholar 

  5. Blaženović I, Kind T, Ji J, Fiehn O (2018) Software tools and approaches for compound identification of LC-MS/MS data in metabolomics. Metabolites 8(2):31

    PubMed Central  Google Scholar 

  6. Blin K, Kim HU, Medema MH, Weber T (2017) Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. https://doi.org/10.1093/bib/bbx146

    Article  PubMed Central  Google Scholar 

  7. Bonet B, Teufel R, Crüsemann M, Ziemert N, Moore BS (2015) Direct capture and heterologous expression of Salinispora natural product genes for the biosynthesis of enterocin. J Nat Prod 78:539–542

    CAS  PubMed  Google Scholar 

  8. Bose U, Hewavitharana A, Ng Y, Shaw P, Fuerst J, Hodson M (2015) LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. Mar Drugs 13:249–266

    PubMed  PubMed Central  Google Scholar 

  9. Braaksma M, Bijlsma S, Coulier L, Punt PJ, van der Werf MJ (2011) Metabolomics as a tool for target identification in strain improvement: the influence of phenotype definition. Microbiology 157:147–159

    CAS  PubMed  Google Scholar 

  10. Breitling R, Ceniceros A, Jankevics A, Takano E (2013) Metabolomics for secondary metabolite research. Metabolites 3:1076–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chaudhary T, Shukla P (2019) Bioinoculant capability enhancement through metabolomics and systems biology approaches. Brief Funct Genomics 18:159–168

    Google Scholar 

  12. Cheng C, MacIntyre L, Abdelmohsen UR, Horn H, Polymenakou PN, Edrada-Ebel R, Hentschel U (2015) Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 10:0138528

    Google Scholar 

  13. Chong J, Xia J (2018) MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34:4313–4314

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cobb RE, Wang Y, Zhao H (2015) High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728

    CAS  PubMed  Google Scholar 

  15. Cohen DR, Townsend CA (2018) A dual role for a polyketide synthase in dynemicinenediyne and anthraquinone biosynthesis. Nat Chem 10:231

    CAS  PubMed  Google Scholar 

  16. Cortina NS, Krug D, Plaza A, Revermann O, Müller R (2012) Myxoprincomide: a natural product from Myxococcus xanthus discovered by comprehensive analysis of the secondary metabolome. Angew Chem 51:811–816

    CAS  Google Scholar 

  17. Covington BC, McLean JA, Bachmann BO (2017) Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 34:6–24

    CAS  PubMed  PubMed Central  Google Scholar 

  18. D'Agostino P, Gulder TA (2018) Direct Pathway Cloning (DiPaC) combined with Sequence-and Ligation-Independent Cloning (SLIC) for fast biosynthetic gene cluster refactoring and heterologous expression. ACS Synth Biol 7:1702–1708

    CAS  PubMed  Google Scholar 

  19. Dangi AK, Dubey KK, Shukla P (2017) Strategies to improve Saccharomyces cerevisiae: technological advancements and evolutionary engineering. Indian J Microbiol 57:378–386

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dangi AK, Sinha R, Dwivedi S, Gupta SK, Shukla PS (2018) Cell line techniques and gene editing tools for antibody production: a review. Front Pharmacol 9:630

    PubMed  PubMed Central  Google Scholar 

  21. Dhakal D, Dhakal Y, Sapkota D, Sohng JK (2017) Drug discovery based on microbial metabolism and communities. EC Microbiol (SI) 1:6–9

  22. Dwivedi GR, Sisodia BS (2019) Secondary metabolites: metabolomics for secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 333–344

    Google Scholar 

  23. Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinospora. Angew Chem 42:355–357

    CAS  Google Scholar 

  24. Fillet M, Frédérich M (2015) The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discov Today Technol 13:19–24

    PubMed  Google Scholar 

  25. Greunke C, Duell ER, D’Agostino PM, Glöckle A, Lamm K, Gulder TAM (2018) Direct Pathway Cloning (DiPaC) to unlock natural product biosynthetic potential. Metab Eng 47:334–345

    CAS  PubMed  Google Scholar 

  26. Harvey AL, Edrada-Ebel R, Quinn RJ (2015) The re-emergence of natural products for drug discovery in the genomics era. Nat Rev Drug Discov 14:111

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollywood KA, Schmidt K, Takano E, Breitling R (2018) Metabolomics tools for the synthetic biology of natural products. Curr Opin Biotechnol 54:114–120

    CAS  PubMed  Google Scholar 

  28. Horbal L, Marques F, Nadmid S, Mendes MV, Luzhetskyy A (2018) Secondary metabolites overproduction through transcriptional gene cluster refactoring. Metab Eng 49:299–315

    CAS  PubMed  Google Scholar 

  29. Huang H, Zheng G, Jiang W, Hu H, Lu Y (2015) One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim Biophys Sin 47:231–243

    CAS  PubMed  Google Scholar 

  30. Jaddoa HH, Hameed IH, Mohammed GJ (2016) Analysis of volatile metabolites released by Staphylococcus aureus using gas chromatography-mass spectrometry and determination of its antifungal activity. Orient J Chem 32:2107–2116

    CAS  Google Scholar 

  31. Jaiswal S, Singh DK, Shukla P (2019) Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol 10:87

    PubMed  PubMed Central  Google Scholar 

  32. Jia H, Zhang L, Wang T, Han J, Tang H, Zhang L (2017) Development of a CRISPR/Cas9-mediated gene-editing tool in Streptomyces rimosus. Microbiology 163:1148–1155

    CAS  PubMed  Google Scholar 

  33. Jiang W, Zhao X, Gabrieli T, Lou C, Ebenstein Y, Zhu TF (2015) Cas9-Assisted targeting of chromosome segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun 6:8101

    PubMed  PubMed Central  Google Scholar 

  34. Johnston CW, Connaty AD, Skinnider MA, Li Y, Grunwald A, Wyatt MA, Kerr RG, Magarvey NA (2016) Informatic search strategies to discover analogues and variants of natural product archetypes. J Ind Microbiol Biotechnol 43:293–298

    CAS  PubMed  Google Scholar 

  35. Kang HS, Charlop-Powers Z, Brady SF (2016) Multiplexed CRISPR/Cas9-and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth Biol 5:1002–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kildgaard S, Mansson M, Dosen I, Klitgaard A, Frisvad JC, Larsen TO, Nielsen KF (2014) Accurate dereplication of bioactive secondary metabolites from marine-derived fungi by UHPLC-DAD-QTOFMS and a MS/HRMS library. Mar Drugs 12:3681–3705

    PubMed  PubMed Central  Google Scholar 

  37. Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Müller R (2008) Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol 74:3058–3068

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee NC, Larionov V, Kouprina N (2015) Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast. Nucleic Acids Res 43:e55–e55

    PubMed  PubMed Central  Google Scholar 

  39. Lee N, Hwang S, Lee Y, Cho S, Palsson B, Cho BK (2019a) Synthetic biology tools for novel secondary metabolite discovery in Streptomyces. J Microbiol Biotechnol 29:667–686

    PubMed  Google Scholar 

  40. Lee SY, Mediani A, Ismail IS, Abas F (2019b) Antioxidants and α-glucosidase inhibitors from Neptunia oleracea fractions using 1 H NMR-based metabolomics approach and UHPLC-MS/MS analysis. BMC Complement Altern Med 19:7

    PubMed  PubMed Central  Google Scholar 

  41. Lenders J, Frédérich M, De Tullio P (2015) Nuclear magnetic resonance: a key metabolomics platform in the drug discovery process. Drug Discov Today Technol 13:39–46

    Google Scholar 

  42. Li L, Zheng G, Chen J, Ge M, Jiang W, Lu Y (2017) Multiplexed site-specific genome engineering for overproducing bioactive secondary metabolites in actinomycetes. Metab Eng 40:80–92

    CAS  PubMed  Google Scholar 

  43. Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, Sun Y (2015) In vitro CRISPR/Cas9 system for efficient targeted DNA editing. Mbio 6:e01714–e1715

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K, Thi Tran H et al (2018) Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci. Rep 8:1594

    PubMed  PubMed Central  Google Scholar 

  45. Madala NE, Piater LA, Steenkamp PA, Dubery IA (2014) Multivariate statistical models of metabolomic data reveals different metabolite distribution patterns in isonitrosoacetophenone-elicited Nicotiana tabacum and Sorghum bicolor cells. SpringerPlus 3:254

    PubMed  PubMed Central  Google Scholar 

  46. Mo J, Wang S, Zhang W, Li C, Deng Z, Zhang L, Qu X (2019) Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system. Synth Syst Biotechnol 4:86–91

    PubMed  PubMed Central  Google Scholar 

  47. Mohana NC, Rao HY, Rakshith D, Mithun PR, Nuthan BR, Satish S (2018) Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era. Genet Eng Biotechnol 16:1–8

    Google Scholar 

  48. Mohimani H, Liu WT, Mylne JS, Poth AG, Colgrave ML, Tran D, Selsted ME, Dorrestein PC, Pevzner PA (2011) Cycloquest: identification of cyclopeptides via database search of their mass spectra against genome databases. J Proteome Res 10:4505–4512

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohimani H, Liu WT, Kersten RD, Moore BS, Dorrestein PC, Pevzner PA (2014) NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J Nat Prod 77:1902–1909

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Nguyen QT, Merlo ME, Medema MH, Jankevics A, Breitling R, Takano E (2012) Metabolomics methods for the synthetic biology of secondary metabolism. FEBS Lett 586:2177–2183

    CAS  PubMed  Google Scholar 

  51. Nielsen ML, Isbrandt T, Rasmussen KB, Thrane U, Hoof JB, Larsen TO, Mortensen UH (2017) Genes linked to production of secondary metabolites in Talaromyces atroroseus revealed using CRISPR-Cas9. PLoS ONE 12:e0169712

    PubMed  PubMed Central  Google Scholar 

  52. Palazzotto E, Weber T (2018) Omics and multi-omics approaches to study the biosynthesis of secondary metabolites in microorganisms. Curr Opin Biotechnol 45:109–116

    CAS  Google Scholar 

  53. Palazzotto E, Tong Y, Lee SY, Weber T (2019) Synthetic biology and metabolic engineering of actinomycetes for natural product discovery. Biotechnol Adv 37:107366

    PubMed  Google Scholar 

  54. Pohl C, Kiel JAKW, Driessen AJM, Bovenberg RAL, Nygard Y (2016) CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol 5:754–764

    CAS  PubMed  Google Scholar 

  55. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI (2017) Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci 8:3218–3227

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramell AM, Rodriguez MP, Alay A, Tulipani S, Urpi-sarda M, Sanchez-Pla A, Andres-Lacueva C (2018) Evaluation and comparison of bioinformatic tools for the enrichment analysis of metabolomics data. BMC Bioinform 19:1

    Google Scholar 

  57. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523

    CAS  PubMed  Google Scholar 

  58. Saini DK, Chakdar H, Pabbi S, Shukla P (2019) Enhancing production of microalgal biopigments through metabolic and genetic engineering. Crit Rev Food Sci Nutr 1:1–15

    Google Scholar 

  59. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Schrimpe-Rutledge AC, Sherrod SD, McLean JA (2018) Improving the discovery of secondary metabolite natural products using ion mobility–mass spectrometry. Curr Opin Chem Biol 42:160–166

    CAS  PubMed  Google Scholar 

  61. Seyedsayamdost MR (2019) Toward a global picture of bacterial secondary metabolism. J Ind Microbiol Biotechnol 46:301–311

    CAS  PubMed  Google Scholar 

  62. Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H (2013) Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2:662–669

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh BP, Rateb M, Rodriguez-Couto S, Polizeli MDLTD, Li WJ (2019) Microbial secondary metabolites: recent developments and technological challenges. Front Microbiol 10000:10000. https://doi.org/10.3389/fmicb.2019.00914

    Article  Google Scholar 

  64. Tao W, Yang A, Deng Z, Sun Y (2018) CRISPR/Cas9-based editing of Streptomyces for discovery, characterization and production of natural products. Front Microbiol 9:1660

    PubMed  PubMed Central  Google Scholar 

  65. Tawfik N, Tawfike ŮA, Abdo R, Abbott G, Abdelmohsen UR, Edrada-Ebel R, Haggag E (2017) Metabolomics and bioactivity guided isolation of secondary metabolites from the endophytic fungus Chaetomium sp. J Adv Pharm Res 1:66–74

    Google Scholar 

  66. Tawfike AF, Romli M, Clements C, Abbott G, Young L, Schumacher M, Diederich M, Farag M, Edrada-Ebel R (2019) Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B 1106:71–83

    Google Scholar 

  67. Tong Y, Charusanti P, Zhang L, Weber T, Lee SY (2015) CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029

    CAS  PubMed  Google Scholar 

  68. Tong Y, Weber T, Lee SY (2019) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep 36:1262–1280

    CAS  PubMed  Google Scholar 

  69. Tran PN, Yen MR, Chiang CY, Lin HC, Chen PY (2019) Detecting and prioritizing biosynthetic gene clusters for bioactive compounds in bacteria and fungi. Applied Microbiol Biotechnol 103:3277–3287

    CAS  Google Scholar 

  70. Valayil JM (2016) Activation of microbial silent gene clusters: genomics driven drug discovery approaches. Biochem Anal Biochem 5:276

    Google Scholar 

  71. Wen B, Mei Z, Zeng C, Liu S (2017) metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics 18:183

    PubMed  PubMed Central  Google Scholar 

  72. Wietz M, Mansson M, Gotfredsen CH, Larsen TO, Gram L (2010) Antibacterial compounds from marine Vibrionaceae isolated on a global expedition. Mar Drugs 8:2946–2960

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473

    CAS  PubMed  Google Scholar 

  74. Wu C, Kim HK, van Wezel GP, Choi YH (2015) Metabolomics in the natural products field—a gateway to novel antibiotics. Drug Discov Today Technol 13:11–17

    PubMed  Google Scholar 

  75. Wu C, Zhu H, van Wezel GP, Choi YH (2016) Metabolomics-guided analysis of isocoumarin production by Streptomyces species MBT76 and biotransformation of flavonoids and phenylpropanoids. Metabolomics 12:90

    PubMed  PubMed Central  Google Scholar 

  76. Wu C, Du C, Gubbens J, Choi YH, van Wezel GP (2018) Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT28. J Nat Prod 78:2355–2363

    Google Scholar 

  77. Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(suppl_2):W652–W660.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu M, Wright GD (2019) Heterologous expression-facilitated natural products’ discovery in actinomycetes. J Ind Microbiol Biotechnol 46:415–431

    CAS  PubMed  Google Scholar 

  79. Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ, Nizet V et al (2014) Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA 111:1957–1962

    CAS  PubMed  Google Scholar 

  80. Zebec Z, Scrutton NS (2018) Genome editing for the production of natural products in Escherichia coli. Adv Biosyst 2:1800056

    Google Scholar 

  81. Zhang MM, Wang Y, Ang EL, Zhao H (2016) Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 33:963–987

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang MM, Wong FT, Wang Y, Luo S, Lim YH, Heng E, Yeo WL, Cobb RE, Enghiad B, Ang EL, Zhao H (2017) CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol 13:607

    CAS  Google Scholar 

  83. Zhang MM, Qiao Y, Ang EL, Zhao H (2018) Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discov 12:475–487

    Google Scholar 

Download references

Acknowledgements

The author, Babita Sharma acknowledges Maharshi Dayanand University, Rohtak, India for providing University Research Fellowship (URS). PS acknowledges the infrastructural support from Department of Science and Technology, New Delhi, Govt. of India, through FIST grant (Grant No. 1196 SR/FST/LS-I/ 2017/4) and Department of Biotechnology, Government of India (Grant No. BT/PR27437/BCE/8/1433/2018) is duly acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Ethics declarations

Conflict of interest

The authors don’t have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, R., Sharma, B., Dangi, A.K. et al. Recent metabolomics and gene editing approaches for synthesis of microbial secondary metabolites for drug discovery and development. World J Microbiol Biotechnol 35, 166 (2019). https://doi.org/10.1007/s11274-019-2746-2

Download citation

Keywords

  • Secondary metabolites
  • Drug discovery
  • Metabolomics
  • Gene editing
  • CRISPR-Cas
  • Gene refactoring