Advances in research on signal molecules regulating biofilms

  • Li Yi
  • Jinpeng Li
  • Baobao Liu
  • Yang WangEmail author


Bacterial biofilms (BFs) are membrane-like structures formed by the secretion of extracellular polymeric substances (EPS) by bacteria. The formation of BFs contributes to bacterial survival and drug resistance. When bacteria proliferate, they produce secondary metabolites that act as signaling molecules in bacterial communities that regulate intracellular and cell-to-cell communication. This communication can directly affect the physiological behavior of bacteria, including the production and emission of light (bioluminescence), the expression of virulence factors, the resistance to antibiotics, and the shift between planktonic and biofilm lifestyles. We review the major signaling molecules that regulate BF formation, with a focus on quorum-sensing systems (QS), cyclic diguanylate (c-di-GMP), two-component systems (TCS), and small RNA (sRNA). Understanding these processes will lead to new approaches for treating chronic diseases and preventing bacterial resistance.


Biofilm Signal molecule Quorum-sensing Two-component systems 



We are grateful to Prof. Daniel Grenier for critically read and corrected the manuscript. This work was supported by the National Key Research and Development Program of China (2018YFD0500100), the National Natural Science Foundation of China (31772761), the Henan Natural Science Foundation (182300410047).


  1. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409. CrossRefPubMedGoogle Scholar
  2. Bordi C et al (2010) Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol 76:1427–1443. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Broder UN, Jaeger T, Jenal U (2016) LadS is a calcium-responsive kinase that induces acute-to-chronic virulence switch in Pseudomonas aeruginosa. Nat Microbiol 2:16184. CrossRefPubMedGoogle Scholar
  4. Chambonnier G et al (2016) The hybrid histidine kinase lads forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genet 12:e1006032. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dai L, Yang L, Parsons C, Findlay VJ, Molin S, Qin Z (2012) Staphylococcus epidermidis recovered from indwelling catheters exhibit enhanced biofilm dispersal and "self-renewal" through downregulation of agr. BMC Microbiol 12:102. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. CrossRefPubMedGoogle Scholar
  7. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. CrossRefGoogle Scholar
  8. Francis VI, Stevenson EC, Porter SL (2017) Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 364:104. CrossRefGoogle Scholar
  9. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275CrossRefGoogle Scholar
  10. Galperin MY (2004) Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6:552–567. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Goodman AL, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S (2009) Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23:249–259. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Guo XP, Sun YC (2017) New insights into the non-orthodox two component Rcs phosphorelay system. Front Microbiol 8:2014. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hickman JW, Harwood CS (2008) Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR (2010) Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol 78:158–172. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR (2012) Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 109:20632–20636. CrossRefPubMedGoogle Scholar
  16. Jakobsen TH, Tolker-Nielsen T, Givskov M (2017) Bacterial biofilm control by perturbation of bacterial signaling. Process Int J Mol Sci 18(9):1970. CrossRefGoogle Scholar
  17. Jakobsen TH et al (2017) A broad range quorum sensing inhibitor working through sRNA inhibition. Sci Rep 7:9857. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jenal U, Reinders A, Lori C (2017) Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol 15:271–284. CrossRefPubMedGoogle Scholar
  19. Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65. CrossRefPubMedGoogle Scholar
  20. Kay E et al (2006) Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Klockgether J, Tummler B (2017) Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Res 6:1261. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302. CrossRefPubMedGoogle Scholar
  23. Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S (2005) A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55:368–380. CrossRefPubMedGoogle Scholar
  24. Lapouge K, Schubert M, Allain FH, Haas D (2008) Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 67:241–253. CrossRefPubMedGoogle Scholar
  25. Laventie BJ et al (2019) A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25(140–152):e146. CrossRefGoogle Scholar
  26. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS (2014) Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. MicrobiologyOpen 3:897–909. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mancl JM, Ray WK, Helm RF, Schubot FD (2019) Helix cracking regulates the critical interaction between RetS and GacS in Pseudomonas aeruginosa. Structure 27(5):785–793. CrossRefPubMedGoogle Scholar
  29. Marden JN et al (2013) An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 110:15055–15060. CrossRefPubMedGoogle Scholar
  30. Meissner A et al (2007) Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 9:2475–2485. CrossRefPubMedGoogle Scholar
  31. Mikkelsen H, Ball G, Giraud C, Filloux A (2009) Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS ONE 4:e6018. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Mikkelsen H, McMullan R, Filloux A (2011) The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS ONE 6:e29113. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller CL, Romero M, Karna SL, Chen T, Heeb S, Leung KP (2016) RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions. BMC Microbiol 16:155. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Moradali MF, Ghods S, Rehm BHA (2017) Activation mechanism and cellular localization of membrane-anchored alginate polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 83(9):e03499. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mougous JD et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312:1526–1530. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nealson KH, Hastings JW (1979) Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518PubMedPubMedCentralGoogle Scholar
  37. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rao F, Yang Y, Qi Y, Liang ZX (2008) Catalytic mechanism of cyclic di-GMP-specific phosphodiesterase: a study of the EAL domain-containing RocR from Pseudomonas aeruginosa. J Bacteriol 190:3622–3631. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa. PAO1 biofilm. J Bacteriol 186:7312–7326. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schaber JA, Carty NL, McDonald NA, Graham ED, Cheluvappa R, Griswold JA, Hamood AN (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841–853. CrossRefPubMedGoogle Scholar
  41. Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41:463–476CrossRefGoogle Scholar
  42. Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291:12547–12555. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang Y, Zhang W, Wu Z, Zhu X, Lu C (2011) Functional analysis of luxS in Streptococcus suis reveals a key role in biofilm formation and virulence. Vet Microbiol 152:151–160. CrossRefPubMedGoogle Scholar
  44. Wang Y et al (2012) Comparative proteomic analysis of Streptococcus suis biofilms and planktonic cells that identified biofilm infection-related immunogenic proteins. PLoS ONE 7:e33371. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wang Y, Yi L, Zhang Z, Fan H, Cheng X, Lu C (2013) Overexpression of luxS cannot increase autoinducer-2 production, only affect the growth and biofilm formation in Streptococcus suis. Sci World J 2013:924276. CrossRefGoogle Scholar
  46. Wang Y, Yi L, Wang S, Fan H, Ding C, Mao X, Lu C (2015) Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation in Streptococcus suis LuxS. PLoS ONE 10:e0138826. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang Y, Wang Y, Sun L, Grenier D, Yi L (2018) The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol. 102(17):7231–7238. CrossRefPubMedGoogle Scholar
  48. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404. CrossRefPubMedGoogle Scholar
  49. Wiens JR, Vasil AI, Schurr MJ, Vasil ML (2014) Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. mBio 5:e01010-01013. CrossRefGoogle Scholar
  50. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP (2004) Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Life ScienceLuoyang Normal UniversityLuoyangChina
  2. 2.Key Laboratory of Molecular Pathogen and Immunology of Animal of LuoyangLuoyangChina
  3. 3.College of Animal Science and TechnologyHenan University of Science and TechnologyLuoyangChina

Personalised recommendations