Skip to main content

Advertisement

Log in

Stress induced biofilm formation in Propionibacterium acidipropionici and use in propionic acid production

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Propionibacterium acidipropionici produces propionic acid from different sugars and glycerol; the production can be improved by high cell density fermentations using immobilized cells that help to overcome the limitations of the non-productive lag phase and product inhibition. In this study, the use of stress factors to induce P. acidipropionici to form biofilm and its use as an immobilization procedure in fermentations in bioreactors for producing propionic acid was investigated. Citric acid and sodium chloride increased exopolysaccharide production, biofilm forming capacity index and trehalose production. Analysis of the expression of trehalose synthesis-related genes otsA and treY by RT-qPCR showed significantly increased expression of only treY during log phase with citric acid, while FISH analysis showed expression of treY and luxS under the influence of both stress factors. The stress factors were then used for development of microbial biofilms as immobilization procedure on Poraver® and AnoxKaldnes® carriers in recycle batch reactors for propionic acid production from 20 g/L glycerol. Highest productivities of 0.7 and 0.78 g/L/h were obtained in Poraver® reactors, and 0.39 and 0.43 g/L/h in AnoxKaldnes® reactors with citric acid and NaCl, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Anastasiou R, Leverrier P, Krestas I, Rouault A, Kalantzopoulos G, Boyaval P, Tsakalidou E, Jan G (2006) Changes in protein synthesis during thermal adaptation of Propionibacterium freudenreichii subsp. shermanii. Int J Food Microbiol 108:301–314

    CAS  PubMed  Google Scholar 

  • Belgrano FDS, Vercoza BRF, Rodrigues JCF, Hatti-Kaul R, Pereira N Jr (2018) EPS production by Propionibacterium freudenreichii facilitates its immobilization for propionic acid production. J Appl Microbiol 125:480–489

    Article  CAS  Google Scholar 

  • Bonsaglia ECR, Silva NCC, Fernandes A, Araujo JP, Tsunemi MH, Rall VLM (2014) Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control 35:386–391

    Article  CAS  Google Scholar 

  • Boyaval P, Deborde C, Corre C, Blanco C, Begue E (1999) Stress and osmoprotection in propionibacteria. Lait 79:59–69

    Article  CAS  Google Scholar 

  • Brüggemann H, Henne A, Hoster F, Liesegang H, Wiezer A, Strittmatter A, Hujer S, Durre P, Gottschalk G (2004) The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science 305:671–673

    Article  Google Scholar 

  • Cardoso FS, Gaspar P, Hugenholtz J, Ramos A, Santos H (2004) Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91:195–204

    Article  CAS  Google Scholar 

  • Cardoso FS, Castro RF, Borges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiol 153:270–280

    Article  CAS  Google Scholar 

  • Chen F, Feng X, Xu H, Zhang D, Ouyang P (2013) Propionic acid production in a plant fibrous-bed bioreactor with immobilized Propionibacterium freudenreichii CCTCC M207015. J Biotechnol 164:202–210

    Article  Google Scholar 

  • Coral J, Karp SG, de Souza Porto, Vandenberghe LP, Parada JL, Pandey A, Soccol CR (2008) Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Appl Biochem Biotechnol 151:333–341

    Article  CAS  Google Scholar 

  • Cousin FJ, Mater DDG, Foligne B, Jan G (2011) Dairy propionibacteria as probiotics: a review of recent evidence. Dairy Sci Technol 91:1–26

    Google Scholar 

  • Di Pippo F, Ellwood NTW, Gismondi A, Bruno L, Rossi F, Magni P, De Philippis R (2013) Characterization of exopolysaccharides produced by seven biofilm-forming cyanobacterial strains for biotechnological applications. J Appl Phycol 25:1697–1708

    Article  CAS  Google Scholar 

  • Dishisha T, Alvarez MT, Hatti-Kaul R (2012) Batch- and continuous propionic acid production from glycerol using free and immobilized cells of Propionibacterium acidipropionici. Bioresour Technol 118:553–562

    Article  CAS  Google Scholar 

  • Dishisha T, Ståhl Å, Lundmark S, Hatti-Kaul R (2013) An economical biorefinery process for propionic acid production from glycerol and potato juice using high cell density fermentation. Bioresour Technol 135:504–512

    Article  CAS  Google Scholar 

  • Dishisha T, Ibrahim MHA, Cavero VH, Alvarez MT, Hatti-Kaul R (2015) Improved propionic acid production from glycerol: combining cyclic batch-and sequential batch fermentations with optimal nutrient composition. Bioresour Technol 176:80–87

    Article  CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks

    Google Scholar 

  • Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Survival strategies of infectious biofilms. Trends Microbiol 13:34–40

    Article  CAS  Google Scholar 

  • Gorret N, Maubois JL, Ghoul M, Engasser JM (2001) Exopolysaccharide production by Propionibacterium acidi-propionici on milk microfiltrate. J Appl Microbiol 90:779–787

    Article  CAS  Google Scholar 

  • Goswami V, Srivastava AK (2001) Propionic acid production in an in situ cell retention bioreactor. Appl Microbiol Biotechnol 56:676–680

    Article  CAS  Google Scholar 

  • Gross R, Hauer B, Otto K, Schmid A (2007) Microbial biofilms: New catalysts for maximizing productivity of long-term biotransformations. Biotechnol Bioeng 98:1123–1134

    Article  CAS  Google Scholar 

  • Gruzdev N, Pinto R, Sela S (2011) Effect of desiccation on tolerance of Salmonella enterica to multiple stresses. Appl Environ Microbiol 77:1667–1673

    Article  CAS  Google Scholar 

  • Guan N, Shin H-D, Chen RR, Li J, Liu L, Du G, Chen J (2014) Understanding of how Propionibacterium acidipropionici respond to propionic acid stress at the level of proteomics. Sci Rep 4:6951

    Article  CAS  Google Scholar 

  • Guan NZ, Li JH, Shin HD, Du GC, Chen J, Liu L (2016) Metabolic engineering of acid resistance elements to improve acid resistance and propionic acid production of Propionibacterium jensenii. Biotechnol Bioeng 113:1294–1304

    Article  CAS  Google Scholar 

  • Holo H, Faye T, Brede DA, Nilsen T, Ödegård I, Langsrud T, Brendehaug J, Nes IF (2002) Bacteriocins of propionic acid bacteria. Lait 82:59–68

    Article  CAS  Google Scholar 

  • Inácio J, Behrens S, Fuchs B, Fonseca A, Spencer I, Amann R (2003) In situ accessibility of Saccharomyces cerevisiae 26S rARN to Cy3-labeled oligonucleotide probes comprising the D1 and D2 domains. Appl Environ Microbiol 5:2899–2905

    Article  Google Scholar 

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    Article  CAS  Google Scholar 

  • Jan G, Rouault A, Maubois J-L (2000) Acid stress susceptibility and acid adaptation of Propionibacterium freudenreichii subsp shermanii. Lait 80:325–336

    Article  CAS  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    Article  CAS  Google Scholar 

  • Jiang L, Cui HY, Zhu LY, Hu Y, Xu X, Li S, Huang H (2015) Enhanced propionic acid production from whey lactose with immobilized Propionibacterium acidipropionici and the role of trehalose synthesis in acid tolerance. Green Chem 17:250–259

    Article  CAS  Google Scholar 

  • Kong KF, Vuong C, Otto M (2006) Staphylococcus quorum sensing in biofilm formation and infection. Inter J Med Microbiol 296:133–139

    Article  CAS  Google Scholar 

  • Langsrud T, Reinbold GW (1973) Flavor development and microbiology of Swiss cheese—a review: II. Starters, manufacturing processes and procedures. J Milk Food Technol 36:531–542

    Article  Google Scholar 

  • Leverrier P, Vissers JPC, Rouault A, Boyaval P, Jan G (2004) Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch Microbiol 181:215–230

    Article  CAS  Google Scholar 

  • Lewis V, Yang S (1992) A novel extractive fermentation process for propionic acid production from whey lactose. Biotechnol Prog 8:104–110

    Article  CAS  Google Scholar 

  • Leyva A, Quintana A, Sanchez M, Rodriguez EN, Cremata J, Sanchez JC (2008) Rapid and sensitive anthrone-sulfuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals 36:134–141

    Article  CAS  Google Scholar 

  • Liu L, Zhu Y, Li J, Wang M, Lee P, Du G (2012) Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 32:374–381

    Article  CAS  Google Scholar 

  • Marsden AE, Grudzinski K, Ondrey JM, DeLoney-Marino CR, Visick KL (2017) Impact of salt and nutrient content on biofilm formation by Vibrio fischeri. PLoS ONE 12(1):e0169521

    Article  Google Scholar 

  • Marshall SH, Gomez FA, Ramirez R, Nilo L, Henriquez V (2012) Biofilm generation by Piscirickettsia salmonis under growth stress conditions: a putative in vivo survival/persistence strategy in marine environments. Res Microbiol 163:557–566

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nakada T, Maruta K, Tsusaki K, Kubota M, Chaen H, Sugimoto T, Kurimoto M, Tsujisaka Y (1995) Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp Q36. Biosci Biotechnol Biochem 59:2210–2214

    Article  CAS  Google Scholar 

  • Nishimoto T, Nakano M, Nakada T, Chaen H, Fukuda S, Sugimoto T, Kurimoto M, Tsujisaka Y (1996) Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp R48. Biosci Biotechnol Biochem 60:640–644

    Article  CAS  Google Scholar 

  • Piwowarek K, Lipinska E, Hac-Szymanczuk E, Kieliszek M, Scibisz I (2018) Propionibacterium spp – source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl Microbiol Biotechnol 102:515–538

    Article  CAS  Google Scholar 

  • Polak-Berecka M, Choma A, Wasko A, Gorska S, Gamian A, Cybulska J (2015) Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources. Carbohyd Polym 117:501–509

    Article  CAS  Google Scholar 

  • Qu Q, Lee S-J, Boos W (2004) TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. J Biol Chem 279:47890–47897

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Racine M, Dumont J, Champagne CP, Morin A (1991) Production and characterization of the polysaccharide from Propionibacterium acidipropionici on whey-based media. J Appl Bacteriol 71:233–238

    Article  CAS  Google Scholar 

  • Ren Y, Dai X, Zhou J, Liu J, Pei H, Xiang H (2005) Gene expression and molecular characterization of a thermostable trehalose phosphorylase from Termoanaerobacter tengcongensis. Sci China Ser C 48:221–227

    CAS  Google Scholar 

  • Rickert DA, Glatz CE, Glatz BA (1998) Improved organic acid production by calcium alginate-immobilized propionibacteria. Enzyme Microb Technol 22:409–414

    Article  CAS  Google Scholar 

  • Rode TM, Langsrud S, Holck A, Möretrö T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383

    Article  CAS  Google Scholar 

  • Romero DX, Cárdenas OV, Cavero VH, Alvarez MT (2016) Detection of luxS gene expression under stressing factors for biofilm formation by Propionibacterium acidipropionici and Propionibacterium freudenreichii. J Adv Biotechnol 5:604–613

    Article  Google Scholar 

  • Ruhal R, Aggarwal S, Choudhury B (2011) Suitability of crude glycerol obtained from biodiesel waste for the production of trehalose and propionic acid. Green Chem 13:3492–3498

    Article  CAS  Google Scholar 

  • Ruhal R, Choudhury B (2012) Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions. J Ind Microbiol Biotechnol 39:1153–1160

    Article  CAS  Google Scholar 

  • Ruhal R, Kataria R, Choudhury B (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6:493–502

    Article  Google Scholar 

  • Sapi E, Theophilus PAS, Pham TV, Burugu D, Luecke DF (2016) Effect of RpoN, RpoS and LuxS pathways on the biofilm formation and antibiotic sensitivity of Borrelia burgdorferi. Eur J Microbiol Immunol 6:272–286

    Article  CAS  Google Scholar 

  • Suethao S, Innawong B, Sirisansaneeyakul S, Vanichsriratana W, Parakulsuksatid P (2015) Optimization and the effect of pH adjustment for trehalose production by Propionibacterium acidipropioninci DSM20273. Kasetsart J 49:726–737

    CAS  Google Scholar 

  • Thornton B, Basu C (2011) Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ 39:145–154

    Article  CAS  Google Scholar 

  • Woskow S, Glatz B (1991) Propionic acid production by a propionic acid-tolerant strain of Propionibacterium acidipropionici in batch and semi-continuous fermentation. Appl Environ Microbiol 57:2821–2828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yongsmith B, Sonomoto K, Tanaka S, Fukui S (1982) Production of Vitamin B12 by immobilized cells of a propionic acid bacterium. Appl Microbiol Biotechnol 16:70–74

    Article  CAS  Google Scholar 

  • Zhang A, Yang ST (2009) Engineering Propionibacterium acidipropionici for enhanced propionic acid tolerance and fermentation. Biotechnol Bioeng 104:766–773

    CAS  PubMed  Google Scholar 

  • Zhu L, Wei P, Cai J, Zhu X, Wang Z, Huang L, Xu Z (2012) Improving the productivity of propionic acid with FBB-immobilized cells of an adapted acid-tolerant Propionibacterium acidipropionici. Bioresour Technol 112:248–253

    Article  CAS  Google Scholar 

  • Zuberi A, Misba L, Khan AU (2017) CRISPR Interference (CRISPRi) Inhibition of luxS gene expression in E. coli: an approach to inhibit biofilm. Front Cell Infect Microbiol 7:1–7

    Article  Google Scholar 

Download references

Funding

This study was funded by the financial support of Swedish International Development Cooperation Agency (SIDA) for the Sweden-Bolivia Cooperation, and of Sweden´s Innovation Agency (VINNOVA) for BioVinn project (2008–00849) are gratefully acknowledged. The authors are grateful to LABOGEN laboratories in La Paz, Bolivia for the use of its instrumentation in molecular analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Hugo Cavero-Olguin.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavero-Olguin, V.H., Hatti-Kaul, R., Cardenas-Alegria, O.V. et al. Stress induced biofilm formation in Propionibacterium acidipropionici and use in propionic acid production. World J Microbiol Biotechnol 35, 101 (2019). https://doi.org/10.1007/s11274-019-2679-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2679-9

Keywords

Profiles

  1. Rajni Hatti-Kaul