Skip to main content
Log in

Biotechnological application of endophytic filamentous bipolaris and curvularia: a review on bioeconomy impact

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The filamentous Bipolaris and Curvularia genera consist of species known to cause severe diseases in plants and animals amounting to an estimated annual loss of USD $10 billion worldwide. Despite the harmful effect of Bipolaris and Curvularia species, scarce attention is paid on beneficial areas where the fungi are used in industrial processes to generate biotechnological products. Catalytic potential of Bipolaris and Curvularia species in the production of biodiesel, bioflucculant, biosorbent, and mycoherbicide are promising for the bioeconomy. It is herein demonstrated that knowledge-based application of some endophytic Bipolaris and Curvularia species are indispensable vectors of sustainable economic development. In the twenty-first century, India, China, and the USA have taken progress in the biotechnological application of these fungi to generate wealth. As such, some Bipolaris and Curvularia species significantly impact on global crop improvement, act as catalyst in batch-reactors for biosynthesis of industrial enzymes and medicines, bioengineer of green–nanoparticle, agent of biofertilizer, bioremediation and bio-hydrometallurgy. For the first time, this study discusses the current advances in biotechnological application of Bipolaris and Curvularia species and provide new insights into the prospects of optimizing their bioengineering potential for developing bioeconomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Elreesh G, Zaki S, Farag S, Elkady MF, Abd-El-Haleem D (2011) Exobiopolymer from polyhydroxyalkanoate-producing transgenic yeast. Afr J Biotechnol 10(34):6558–6563

    CAS  Google Scholar 

  • Adhikary SK, Mian TH (2006) Gel electrophoresis of extracellular enzymes of Bipolaris sokokiniana. Indian J Agric Res 40:235–245

    Google Scholar 

  • Alam S, Khalil S, Ayub N, Rashid M (2002) In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. Int J Agric Biol 4(4):454–458

    CAS  Google Scholar 

  • Ali MA, Khalil NM, El-Ghany MNA (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6(16):3783–3790

    CAS  Google Scholar 

  • Aljuboori AH, Idris A, Abdullah N, Mohamad R (2013) Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresour Technol 127:489–493

    Article  CAS  Google Scholar 

  • Al-Nasrawi H (2012) Biodegradation of crude oil by fungi isolated from Gulf of Mexico. J Bioremed Biodegrad 3(4):147–152. https://doi.org/10.4172/2155-6199.1000147

    Article  CAS  Google Scholar 

  • Anand P, Isar J, Saran S, Saxena RK (2006) Bioaccumulation of copper by Trichoderma viride. Bioresour Technol 97(8):1018–1025

    Article  CAS  Google Scholar 

  • Anonymous (2018) Global fungicides market outlook 2018-in-depth insight of sales analysis, business growth forecast and upcoming trends opportunities by types and application and major regions forecast by 2025. http://www.wfmj.com/story/39346457/global-fungicides-market-outlook-2018-in-depth-insight-of-sales-analysis-business-growth-forecast-and-upcoming-trends-opportunities-by-types-and. Accessed 23 Oct 2018

  • Apoga D, Ek B, Tunlid A (2001) Analysis of proteins in the extracellular matrix of the plant pathogenic fungus Bipolaris sorokiniana using 2-D gel electrophoresis and MS/MS. FEMS Microbiol Lett 197(2):145–150

    Article  CAS  Google Scholar 

  • Babana AH, Antoun H (2006) Effect of Tilemsi phosphate rock-solubilizing microorganisms on phosphorus uptake and yield of field-grown wheat (Triticum aestivum L.) in Mali. Plant Soil 287(1–2):51–58

    Article  CAS  Google Scholar 

  • Baborowski M, Bozau E (2006) Impact of former mining activities on the uranium distribution in the River Saale (Germany). Appl Geochem 21(6):1073–1082

    Article  CAS  Google Scholar 

  • Banerjee UC (1994) Optimization of culture conditions for the production of rifamycin oxidase by Curvularia lunata. World J Microbiol Biotechnol 10:462–464. https://doi.org/10.1007/BF00144473

    Article  CAS  PubMed  Google Scholar 

  • Banerjee UC, Scrivastava JP (1993) Effect of pH and glucose concentration on the production of rifamycin oxidase by Curvularia lunata in batch reactor. J Biotechnol 28:229–236

    Article  CAS  Google Scholar 

  • Bardi L, Marzona M (2010) Factors affecting the complete mineralization of azo dyes. Biodegradation of azo dyes. Handbook Environ Chem 9:195–210. https://doi.org/10.1007/698_2009_50

    Article  Google Scholar 

  • Barroso CB, Nahas E (2005) The status of soil phosphate fractions and the ability of fungi to dissolve hardly soluble phosphates. Appl Soil Ecol 29(1):73–83

    Article  Google Scholar 

  • Beckett AR, Kahn SA, Seay R, Lintner AC (2017) Invasive Curvularia infections in burn patients: a case series. Surg Infect Case Rep 2(1):76–79

    Google Scholar 

  • Bengyella L, Roy P, Waikhom SD, Talukdar NC (2013) Report of foliar necrosis of potato caused by Cochliobolus lunatus in India. Afr J Biotechnol 12(8):833–835

    Google Scholar 

  • Bengyella L, Sayanika DW, Roy P, Bhardwaj PK, Singh MW, Goyari S, Sharma CK, Talukdar NC (2014) Secretome weaponries of Cochliobolus lunatus interacting with potato leaf at different temperature regimes reveal a CL[xxx]LHM-motif. BMC Genomics 15:213. https://doi.org/10.1186/1471-2164-15-213

    Article  CAS  Google Scholar 

  • Bengyella L, Waikhom SD, Jose RC, Goyari S et al (2015) Cochliobolus lunatus colonizes potato by adopting different invasion strategies on cultivars: new insights on temperature dependent-virulence. Microb Pathog 87(2015):30–39. https://doi.org/10.1016/j.micpath.2015.07.014

    Article  Google Scholar 

  • Bengyella L, Yekwa LE, Waikhom SD, Nawaz K, Iftikhar S, Motloi TS, Tambo E, Roy P (2017) Upsurge in Curvularia infections and global emerging antifungal drug resistance. Asian J Sci Res 10(4):299–307

    Article  CAS  Google Scholar 

  • Bengyella L, Yekwa LE, Nawaz K, Iftikhar S, Tambo E et al (2018) Cochliobolus species: global cohort of destroyers with implications in food losses and insecurity in the 21st century. Arch Microbiol 200(1):119–135. https://doi.org/10.1007/s00203-017-1426-6

    Article  CAS  PubMed  Google Scholar 

  • Bhatt JK, Ghevariya CM, Dudhagara DR, Rajpara RK, Dave BP (2014) Application of response surface methodology for rapid chrysene biodegradation by newly isolated marine-derived fungus Cochliobolus lunatus strain CHR4D. J Microbiol 52(11):908–917. https://doi.org/10.1007/s12275-014-4137-6

    Article  CAS  PubMed  Google Scholar 

  • Bhola KL (1971) Uranium deposits in Singhbhum for use in nuclear power programme. Proc Indian Natl Sci Acad A 37(4):277–296

    CAS  Google Scholar 

  • Bi Y, Yu Z (2016) Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J Agric Food Chem 64:8525–8529. https://doi.org/10.1021/acs.jafc.6b03645

    Article  CAS  PubMed  Google Scholar 

  • Birgitta EK, Anna O, Yngve A, Johanna A, Arvid OJ, Thomas A, Karsten P (2004) Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad. Geoderma 122:177–194

    Article  Google Scholar 

  • Bosecker K (1997) Bioleaching: metal solubilization by microorganisms, Federal Institute for Geosciences and Natural Resources (BGR), Hannover (Germany). FEMS Microbiol Rev 20:591–604

    Article  CAS  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13

    Article  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44(12):1115–1136. https://doi.org/10.1139/w98-119

    Article  CAS  Google Scholar 

  • Campos FF, Rosa LH, Cota BB, Caligiorne RB, Rabello AL, Alves TM, Rosa CA, Zani CL (2008) Leishmanicidal metabolites from Cochliobolus sp., an endophytic fungus isolated from Piptadenia adiantoides (Fabaceae). PLoS Negl Trop Dis 2(12):e348

    Article  Google Scholar 

  • CGG (2016) Chemistry goes green. http://www.economist.com/node/16492601. Accessed 19 July 2016

  • Chang Y-C, Graf E, Green AM (2018) Invasive Curvularia infection in pediatric patients with hematologic malignancy identified by fungal sequencing. J Pediatric Infect Dis Soc. https://doi.org/10.1093/jpids/piy

    Article  PubMed  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22(11):585–594. https://doi.org/10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Chernykh AM, Leont’evskii AA, Golovleva LA (2005) New approaches to increasing the yield of laccase from Panus tigrinus. Appl Biochem Microbiol 41:508. https://doi.org/10.1007/s10438-005-0092-7

    Article  CAS  Google Scholar 

  • Chuang CC, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43(5):575–584

    Article  CAS  Google Scholar 

  • Cooper MA, Shlaes D (2011) Fix the antibiotics pipeline. Nature 472:32

    Article  CAS  Google Scholar 

  • Crescenzi V (1995) Microbial polysaccharides of applied interest: ongoing research activities in Europe. Biotechnol Prog 11(3):251–259

    Article  CAS  Google Scholar 

  • Dahoumane SA, Yéprémian C, Djédiat C, Couté A, Fiévet F, Coradin T, Brayner R (2016) Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J Nanopart Res 18(3):79. https://doi.org/10.1007/s11051-016-3378-1

    Article  CAS  Google Scholar 

  • Davidson JF, Whyte B, Bissinger PH, Schiest RH (1996) Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. PNAS 93(10):5116–5121. https://doi.org/10.1073/pnas.93.10.5116

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Yu G, Ting YP (2005) Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf Biointerfaces 44(4):179–186

    Article  CAS  Google Scholar 

  • Dias MA, Lacerda ICA, Pimentel PF, de Castro HF, Rosa CA (2002) Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol 34:46–50

    Article  CAS  Google Scholar 

  • Dighton J (2007) Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Kubicek C, Druzhinina I (eds) Environmental and microbial relationships. The mycota, vol 4. Springer, Berlin, pp 287–300

    Chapter  Google Scholar 

  • Diss L, Blaudez D, Gelhaye E, Chalot M (2011) Genome-wide analysis of fungal manages transporters, with an emphasis on Phanerochaete chrysosporium. Environ Microbiol Rep 3(3):367–382

    Article  CAS  Google Scholar 

  • Do Nascimento AM, Soares MG, da Silva Torchelsen FK, de Araujo JA, Lage PS, Duarte MC, Andrade PH, Ribeiro TG, Coelho EA, do Nascimento AM (2015) Antileishmanial activity of compounds produced by endophytic fungi derived from medicinal plant Vernonia polyanthes and their potential as source of bioactive substances. World J Microbiol Biotechnol 31(11):1793–1800. https://doi.org/10.1007/s11274-015-1932-0

    Article  CAS  PubMed  Google Scholar 

  • Dou YP, Wang ZH, Wu ZW, Zhao XF (2006) Study on the production of nit mutant of maize Curvularia leaf spot fungus. J Anhui Agric Sci 34:2781–2782

    Google Scholar 

  • Drewniak L (2014) Uranium storages in the Sudety Mountains—high ionizing radiation and its limitation, nuclear safety and radiation protection (in Polish: Bezpieczeństwo Jądrowe i Ochrona Radiologiczna), vol 4. National Atomic Energy Agency, Warszawa

    Google Scholar 

  • Duke SO, Dayan FE (2015) Discovery of new herbicides modes of action with natural phytotoxins. American Chemical Society symposium series. American Chemical Society, Washington, DC. https://doi.org/10.1021/bk-2015-1204.ch007

    Book  Google Scholar 

  • El-Ghonemy A (2017) Extracellular alkaline lipase from a novel fungus Curvularia sp. DHE 5: optimisation of physicochemical parameters, partial purification and characterisation. Food Technol Biotechnol 55(2):206–217. https://doi.org/10.17113/ftb.55.02.17.4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgorban AM, El-Samawaty AEM, Abd-Elkader Yassin MA, Sayed SRM, Khan M, Adil SF (2017) Bioengineered silver nanoparticles using Curvularia pallescens and its fungicidal activity against Cladosporium fulvum. Saudi J Biol Sci 24:1522–1528. https://doi.org/10.1016/j.sjbs.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  • Elkady MF, Farag S, Zaki S, Abu-Elreesh G, Abd-El-Haleem D (2011) Bacillus mojavensis strain 32A, a bioflocculant–producing bacterium isolated from an Egyptian salt production pond. Bioresour Technol 102(17):8143–8151

    Article  CAS  Google Scholar 

  • Evidente A, Abouzeid MA (2006) Characterization of phytotoxins from phytopathogenic fungi and their potential use as herbicides in integrated crop management. In: Singh HP, Batish DR, Kohli RK (eds) Handbook of sustainable weed management. The Harworth Press Inc., New York, pp 507–532

    Google Scholar 

  • FAO (2018) The world fertilizer outlook. http://www.fao.org/3/a-i4324e.pdf. Accessed 18 June 2018

  • Feng Xu, Li Dai-Ping, Zhang Ze-Sheng, Chu Zhi-Yong, Luan Jie (2014) Microbial transformation of the anti-diabetic agent corosolic acid. Nat Prod Res 28(21):1879–1886

    Article  CAS  Google Scholar 

  • Fernández-Cabezón L, Galan B, García JL (2017) Engineering Mycobacterium smegmatis for testosterone production. Microbial Biotechnol 10(1):151–161. https://doi.org/10.1111/1751-7915.12433

    Article  CAS  Google Scholar 

  • Flowers TH, Pulford ID, Duncan HJ (1984) Studies on the breakdown of oil in soil. Environ Pollut Ser B 8(1):71–82. https://doi.org/10.1016/0143-148X(84)90008-9

    Article  CAS  Google Scholar 

  • Gadd GM (1988) Accumulation of metals by microorganisms and algae. In: Rehm HJ, Reed G (eds) Biotechnology. Special microbial processes, vol 6b. VCH, Weinheim, pp 401–433

    Google Scholar 

  • Gadermaier G, Hauser M, Ferreira F (2014) Allergens of weed pollen: an overview on recombinant and natural molecules. Methods 66:55–66. https://doi.org/10.1016/j.ymeth.2013.06.014

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N et al (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303–4314

    Google Scholar 

  • Hadibarata T, Kristanti RA (2012) Fate and co-metabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresour Technol 107:314–318. https://doi.org/10.1016/j.biortech.2011.12.046

    Article  CAS  PubMed  Google Scholar 

  • Halder M, Mondal S, Ray S, Kundu S (2018) Myco-synthesized silver nanoparticles from Curvularia affinis showing inhibitory activity against phyto-pathogenic fungus Alternaria solani. J Mycopathol Res 56(1):1–4

    Google Scholar 

  • Harris JN, New PB, Martin PM (2006) Laboratory tests can predict beneficial effects of phosphate-solubilising bacteria on plants. Soil Biol Biochem 38(7):1521–1526

    Article  CAS  Google Scholar 

  • Hefnawy MA, El-Said M, Hussein M, Amin A (2002) Fungal leaching of uranium from its geological ores in Alloga area, West Central Sinai. J Biol Sci 2:346–350. https://doi.org/10.1155/2016/9519527

    Article  CAS  Google Scholar 

  • Hussain MA, Mahajan V, Rather IA, Awasthi P, Chouhan R et al (2017) Isolation and identification of growth promoting endophytic fungi from Artemisia annua L. and its effects on artemisinin content. Trends Phytochem Res 1(4):207–214

    CAS  Google Scholar 

  • Jain R, Saxena J, Sharma V (2010) The evaluation of free and encapsulated Aspergillus awamori for phosphate solubilization in fermentation and soil–plant system. Appl Soil Ecol 46(1):90–94

    Article  Google Scholar 

  • Jiang SJ, Qiang S, Zhu YZ (2006) Isolation, purification, identification, and bioassay of helminthosporin with herbicidal activity from Curvularia eragrostidis. Acta Phytopathol Sin 33:313–318

    CAS  Google Scholar 

  • Jiang SJ, Qiang S, Zhu YZ, Dong YF (2008) Isolation and phytotoxicity of a metabolite from Curvularia eragrostidis and characterization of its modes of action. Ann Appl Biol 152:103–111. https://doi.org/10.1111/j.1744-7348.2007.00202.x

    Article  CAS  Google Scholar 

  • Jobanputra AH, Patil GD, Sayyed RZ, Chaudhari AB, Chincholkar SB (2003) Microbial transformation of rifamycin: a novel approach to rifamycin derivatives. Indian J Biotechnol 2:370–377

    CAS  Google Scholar 

  • Johnston HJ, Semmler-Behnke M, Brown DM, Kreyling W et al (2010) Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro. Toxicol Appl Pharmacol 242(1):66–78. https://doi.org/10.1016/j.taap.2009.09.015

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski BE, Oskarsson A, Albinsson Y, Arlinger J, Ödegaard-Jensen A, Andlid T, Pedersen K (2004) Microbial leaching of uranium and other trace elements from shale mine tailings at Ranstad. Geoderma 122(2–4):177–194

    Article  CAS  Google Scholar 

  • Kalinowski BE, Johnsson A, Arlinger J, Pedersen K, Ödegaard-Jensen A, Edberg F (2006) Microbial mobilization of uranium from shale mine waste. Geomicrobiol J 23:157–164

    Article  CAS  Google Scholar 

  • Khana SA, Ahamad A (2013) Fungus mediated synthesis of biomedically important cerium oxide nanoparticles. Mater Res Bull 48:4134–4138. https://doi.org/10.1016/j.matlet.2012.11.125

    Article  CAS  Google Scholar 

  • Khiralla A, Mohamed I, Thomas J et al (2015) A pilot study of antioxidant potential of endophytic fungi from some Sudanese medicinal plants. Asian Pac J Trop Med 8:701–705

    Article  CAS  Google Scholar 

  • Khiralla A, Spina R, Saliba S, Laurain-Mattar D (2018) Diversity of natural products of the genera Curvularia and Bipolaris. Fungal Biol Rev. https://doi.org/10.1016/j.fbr.2018.09.002

    Article  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156(1):87–93

    Article  CAS  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2:83–92

    Google Scholar 

  • Manamgoda DS, Cai L, Bahkali AH, Chukeatirote E (2011) Hyde KD (2011) Cochliobolus: an overview and current status of species. Fungal Diver 51:3. https://doi.org/10.1007/s13225-011-0139-4

    Article  Google Scholar 

  • Masi M, Meyer S, Clement S, Cimino A, Cristofaro M, Evidente A (2017a) Cochliotoxin, a dihydropyranopyran-4,5-dione, and its analogues produced by Cochliobolus australiensis display phytotoxic activity against buffelgrass (Cenchrus ciliaris). J Nat Prod 80:1241–1247

    Article  CAS  Google Scholar 

  • Masi M, Meyer S, Clement S, Cimmino A, Cristofaro M, Evidente A (2017b) Cochliotoxin, a dihydropyranopyran-4,5-dione, and its analogues produced by Cochliobolus australiensis display phytotoxic activity against buffelgrass (Cenchrus ciliaris). J Nat Prod 80(5):1241–1247. https://doi.org/10.1021/acs.jnatprod.6b00696

    Article  CAS  PubMed  Google Scholar 

  • May TW (2017) Report of the nomenclature committee for fungi—20. Taxon 66(2):483–495

    Article  Google Scholar 

  • McCready RG, Gould WD (1990) In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw Hill, New York, p 107

    Google Scholar 

  • McLellan CA, Turbyville TJ, Wijeratne KEM, Kerschen A et al (2007) A rhizosphere fungus enhances Arabidopsis thermotolerance through production of an HSP90 inhibitor. Plant Physiol 145(1):174–182. https://doi.org/10.1104/pp.107.101808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meepagala KM, Johnson RD, Duke SO (2016) Curvularia and dehydrocurvularin as phytotoxic constituents from Curvularia intermedia infecting Pandanus amaryllifolius. J Agric Chem Environ 5:12–22. https://doi.org/10.4236/jacen.2016.51002

    Article  CAS  Google Scholar 

  • Meyer V, Andersen MR, Brakhage AA, Braus G et al (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol 3:6. https://doi.org/10.1186/s40694-016-0024-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Pradhan N, Kar RN, Sukla LB, Mishra BK (2009) Microbial recovery of uranium using native fungal strains. Hydrometallurgy 95(1–2):175–177

    Article  CAS  Google Scholar 

  • Mohapatra S, Bohidar S, Pradhan N, Kar RN, Sukla LB (2007) Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy 85(1):1–8

    Article  CAS  Google Scholar 

  • Morsy MR, Oswald J, He J, Tang Y, Roossinck MJ (2010) Teasing apart a three-way symbiosis: transcriptome analyses of Curvularia protuberata in response to viral infection and heat stress. Biochem Biophys Res Commun 401:225–230

    Article  CAS  Google Scholar 

  • Muniz MdFS, Rocha DF, Silveira NSS, Menezes M (2003) Identification of fungi causal agents of postharvest diseases on commercialized fruits in Alagoas, Brazil. Summa Phytopathol 29:38–42

    Google Scholar 

  • Munoz JA, Gonzalez F, Blazquez ML, Ballester A (1995) A study of the bioleaching of a Spanish uranium ore Part I: a review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy 38(1):39–57

    Article  CAS  Google Scholar 

  • Munusamy S, Bhakyaraj K, Vijayalakshmi L, Stephen A, Narayanan V (2014) Synthesis and characterization of cerium oxide nanoparticles using Curvularia lunata and their antibacterial properties. Int J Innov Res Sci Eng 2(1):318–323

    Google Scholar 

  • Muzzarelli RA, Tanfani F, Scarpini G (1980) Chelating, film-forming, and coagulating ability of the chitosan-glucan complex from Aspergillus niger industrial wastes. Biotechnol Bioeng 22(4):885–896

    Article  CAS  Google Scholar 

  • Myasoedova NM, Chernykh AM, Psurtseva NV, Belova NV, Golovleva LA (2008) New efficient producers of fungal laccases. Appl Biochem Microbiol 44(1):73–77

    Article  CAS  Google Scholar 

  • Nawange SR, Aglawe V, Yadu R, Gutch RS, Tiwari A, Waswani K, Singh SM, Naidu J (2013) Studies on extracellular proteinase activity from Curvularia verruculosa causing phaeohyphomycosis. Asian J Microbiol Biotechnol Environ Sci Paper 15(1):133–142

    CAS  Google Scholar 

  • Neoh CH, Lam CY, Yahya A, Ware I, Ibrahim Z (2015) Waste biomass valor utilization of agro-industrial residues from palm oil industry for production of lignocellulolytic enzymes by Curvularia clavata. Waste Biomass Valor 6:385. https://doi.org/10.1007/s12649-015-9357-4

    Article  CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43. https://doi.org/10.1017/S0021859605005708

    Article  Google Scholar 

  • Oladipo OG, Awotoye OO, Olayinka A, Ezeokoli OT, Maboeta MS, Bezuidenhout CC (2016) Heavy metal tolerance potential of Aspergillus strains isolated from mining sites. Biorem J 20(4):287–297

    Article  CAS  Google Scholar 

  • Osma JF, Toca-Herera JL, Rodríguez-Couto S (2011) Cost analysis in laccase production. J Environ Manag 92(2011):2907–2912

    Article  Google Scholar 

  • Pádua RM, Oliveira AB, Filho JDS, Takahashi JA, de Abreu e Silva M, Braga FC (2007) Biotransformation of digitoxigenin by Cochliobolus lunatus. J Braz Chem Soc 18(7):1303–1310

    Article  Google Scholar 

  • Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95(3):287–291

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Długoński D (1998) Cortexolone 11-hydroxylation in protoplasts of Curularia lunata. J Biotechnol 65:217–224

    Article  CAS  Google Scholar 

  • Paraszkiewicz K, Kanwal A, Długoński J (2002) Emulsifier production by steroid transforming filamentous fungus Curvularia lunata growth and product characterization. J Biotechnol 92(2002):287–294

    Article  CAS  Google Scholar 

  • Paula H (2000) Variability of Curvularia eragrostidis isolates causing leaf blight of yam (Dioscorea cayennensis) in Pernambuco, Brazil. MSc thesis, Federal Rural University of Pernambuco

  • Phongpaichit S, Nikom J, Rungjindamai N, Sakayaroj J, Hutadilok-Towatana N, Rukachaisirikul V, Kirtikara K (2018) Biological activities of extracts from endophytic fungi isolated from garcinia plants. FEMS Immunol Med Microbiol 51:517–525. https://doi.org/10.1111/j.1574-695x.2007.00331.x

    Article  Google Scholar 

  • Pighi L, Pümpel T, Schinner F (1989) Selective accumulation of silver by fungi. Biotechnol Lett 11(4):275–280

    Article  CAS  Google Scholar 

  • Pradhan N, Das B, Gahan CS, Kar RN, Sukla LB (2006) Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans. Bioresour Technol 97(15):1876–1879

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart. https://doi.org/10.1155/2014/963961

    Article  Google Scholar 

  • Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, Wu XY (2014) Multifunctional albumin-MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano 8(4):3202–3212

    Article  CAS  Google Scholar 

  • Priyadharsini P, Thangavelu M (2017) The root endophytic fungus Curvularia geniculata from Parthenium hysterophorus roots improves plant growth through phosphate solubilization and phytohormone production. Fungal Ecol 27:69–77. https://doi.org/10.1016/j.funeco.2017.02.007

    Article  Google Scholar 

  • Puglisi I, Faedda R, Sanzaro V, Piero AR, Petrone G, Cacciola SO (2012) Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene 506(2):325–330. https://doi.org/10.1016/j.gene.2012.06.091

    Article  CAS  PubMed  Google Scholar 

  • PUI (2016) Plateau uranium Inc announces positive updated pea results| potential base case operating cost of US$17.28/lb U3O8 & < US$300 M initial capex. News Releases. http://plateauenergymetals.com/2016/01/25/plateau-uranium-announces-positive-updated-pea-results-potential-base-case-operating-cost-of-us17-28lb-u3o8/. Accessed 25 Jan 2016

  • Puoci F, Lemma F, Spizzirri UG, Cirillo G, CurcioM Picci N (2008) Polymer in agriculture: a review. Am J Agric Biol Sci 3:299–314. https://doi.org/10.3844/ajabssp.2008.299.314

    Article  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriquez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 288:1581. https://doi.org/10.1126/science.1078055

    Article  Google Scholar 

  • Research and Markets (2018) Industrial enzymes—a global market overview. Guinness Centre, Taylors Lane, Dublin 8, Ireland. https://www.researchandmarkets.com/reports/4555807. Accessed May 2018

  • Rewerski B, Mielnicka S, Bartosiewicz I, Polkowska-Motrenko H, Skłodowska A (2013) Uranium post-mining wastes as a potential reserve source of uranium for nuclear energy plants. Physicochem Probl Miner Process 49(1):5–11. https://doi.org/10.5277/ppmp130101

    Article  CAS  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang XB et al (2001) Climate change and extreme weather events. Implications for food production, plant diseases and pests. Glob Change Hum Health 2(2):90–104. https://doi.org/10.1023/A:1015086831467

    Article  Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85(3):763–771. https://doi.org/10.1007/s00253-009-2266-3

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011a) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitol Res 109(3):823–831. https://doi.org/10.1007/s00436-011-2328-1

    Article  PubMed  Google Scholar 

  • Salunkhe RB, Patil SV, Salunke BK, Patil CD, Sonawane AM (2011b) Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Biotechnol Appl Biochem 165(1):221–234. https://doi.org/10.1007/s12010-011-9245-8

    Article  CAS  Google Scholar 

  • Sangamesh MB, Jambagi S, Vasanthakumari MM, Shetty NJ, Kolte H, Ravikanth G et al (2017) Thermotolerance of fungal endophytes isolated from plants adapted to the Thar Desert, India. Symbiosis 75(2):135–147. https://doi.org/10.1007/s13199-017-0527-y

    Article  Google Scholar 

  • Shao MW, Kong LC, Jiang DH, Zhang YL (2016) Phytotoxic and antimicrobial metabolites from Paraphaeosphaeria sp. QTYC11 isolated from the gut of Pantala flavescens Larvae. Rec Nat Prod 10:326–331

    CAS  Google Scholar 

  • Sharma S, Ahmad N, Prakash A, Singh VN, Ghosh AK, Mehta BR (2010) Synthesis of crystalline Ag nanoparticles (AgNPs) from microorganisms. Mater Sci Appl 1:1–7. https://doi.org/10.4236/msa.2010.11001

    Article  CAS  Google Scholar 

  • Sharma R, Prakash O, Sonawane MS, Nimonkar Y, Golellu PB, Sharma R (2016) Diversity and distribution of phenol oxidase producing fungi from soda lake and description of Curvularia lonarensis sp. nov. Front Microbiol 7:1847. https://doi.org/10.3389/fmicb.2016.01847

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva MRO, Almeida AC, Arruda FVF, Gusmão N (2011) Endophytic fungi from Brazilian mangrove plant Laguncularia racemosa (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, pp 1260–1266

    Google Scholar 

  • Singh P, Kim YJ, Wang C, Mathiyalagan R, El-Agamy Farh M, Yang DC (2016) Biogenic silver and gold nanoparticles synthesized using red ginseng root extract, and their applications. Artif Cells Nanomed Biotechnol 44(3):811–816. https://doi.org/10.3109/21691401.2015

    Article  CAS  PubMed  Google Scholar 

  • Sinsabaugh RL, Shah JJF (2010) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102(1–3):31–43. https://doi.org/10.1007/s10533-010-9482-x

    Article  CAS  Google Scholar 

  • Smallwood MF, Calvert CM, Bowles DJ (eds) (1999) Plant responses to environmental stress. Bios Scientific Publishers, Oxford. https://doi.org/10.1006/anbo.2000.1110

    Book  Google Scholar 

  • Sonomoto K, Hoq MMD, Tanaka A, Fukui S (1981) Growth of Curvularia lunata spores into mycelial form with various gels, and steroid 11β-hydroxy1ation by the entrapped mycelia. J Ferment Technol 59:465–469

    CAS  Google Scholar 

  • Spagnoletti FN, Tobar NE, Di Pardo AF, Chiocchio VM, Lavado RS (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminium phosphates. Appl Soil Ecol 111:25–32

    Article  Google Scholar 

  • Stewart-Wade SM, Neumann S, Collins LL, Boland GJ (2002) The biology of Canadian weeds. Taraxacum officinale G.H. Weber ex Wiggers. Can J Plant Sci 82:825–853. https://doi.org/10.4141/P01-010

    Article  Google Scholar 

  • Sumathi T, Viswanath B, Lakshmi AS, SaiGopal DVR (2016) Production of Laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC. Biochem Res Int. https://doi.org/10.1155/2016/9519527

    Article  PubMed  PubMed Central  Google Scholar 

  • Tayung K, Sarkar M, Baruah P (2012) Endophytic fungi occurring in Ipomoea carnea tissues and their antimicrobial potentials. Braz Arch Biol Technol 55(5):653–660. https://doi.org/10.1590/S1516-89132012000500003

    Article  Google Scholar 

  • Tilley AM, Walker HL (2002) Evaluation of Curvularia intermedia (Cochliobolus intermedius) as a potential microbial herbicide for large crabgrass (Digitaria sanguinalis). Biol Control 25:12–21. https://doi.org/10.1016/S1049-9644(02)00035-X

    Article  Google Scholar 

  • Tirupati S, SaiGopal DVR (2016) Production of laccase by Cochliobolus hawanies and their ability to degrade textile dye. Int J Recent Sci Res 7(4):10150–10514. https://doi.org/10.1155/2016/9519527

    Article  CAS  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1984) Uptake of metal ions by Rhizopus arrhizus biomass. Appl Environ Microbiol 47(4):821–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • USDA (2017) United States Department of Agriculture—Illinois Department of Agriculture Market News Report 2017, Springfield, IL. www.ams.usda.gov/mnreports/gx_gr210.txt

  • Vázquez MA, Cabrera ECV, Aceves MA, Mallol JLF (2018) Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates. Biotechnol Res Innov. https://doi.org/10.13140/RG.2.2.28582.22089

    Article  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC Press, Boca Raton

    Google Scholar 

  • Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2163–2196

    Article  Google Scholar 

  • Wang G-D, Chen X-Y (2007) Detoxification of soil phenolic pollutants by plant secretory enzyme. Methods Biotechnol. https://doi.org/10.1007/978-1-59745-098-0_4

    Article  Google Scholar 

  • Wawszczak D, Deptula A, Łada W, Smolinski T, Olczak T, Brykala M, Wojtowicz P, Rogowski M, Miłkowska M, Chmielewski AG (2014) Studies of leaching of copper ores and flotation wastes. J Radioanal Nucl Chem 300(1):243–247

    Article  CAS  Google Scholar 

  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate–limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101(15):6124–6129

    Article  CAS  Google Scholar 

  • Yin C, Jin L, Sun F, Xu X, Shao M, Zhang Y (2018) Phytotoxic and antifungal metabolites from Curvularia crepinii QTYC-1 isolated from the gut of Pantala flavescens. Molecules 23(4):951

    Article  Google Scholar 

  • Yoon JH, Lee ST, Park YH (1998) Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48(1):187–194

    Article  CAS  Google Scholar 

  • Zamani B, Knezek BD, Flegler SL, Beneke ES, Dazzo FB (1985) Autoradiographic method to screen for soil microorganisms which accumulate zinc. Appl Environ Microbiol 49(1):137–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZP (2003) Development of chemical weed control and integrated weed management in China. Weed Biol Manag 3:197–203

    Article  CAS  Google Scholar 

  • Zhang LY, Ye WH, Cao HL, Feng HL (2004) Mikania micrantha HBK in China—an overview. Weed Res 44(1):42–49

    Article  Google Scholar 

  • Zhou WN, White JF, Soares MA, Torres MS, Zhou ZP, Li HY (2015) Diversity of fungi associated with plants growing in geothermal ecosystems and evaluation of their capacities to enhance thermotolerance of host plants. J Plant Interact 10(1):305–314

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by The World Academy of Sciences (TWAS), Trieste, Italy and the Department of Biotechnology, Government of India (DBT/TWAS PG fellowship No. 3240223450) and Alexander von Humbolt (AvH) foundation awarded to Dr. Louis Bengyella.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Louis Bengyella or Pranab Roy.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bengyella, L., Iftikhar, S., Nawaz, K. et al. Biotechnological application of endophytic filamentous bipolaris and curvularia: a review on bioeconomy impact. World J Microbiol Biotechnol 35, 69 (2019). https://doi.org/10.1007/s11274-019-2644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2644-7

Keywords

Navigation