Ethyl-methanesulfonate mutagenesis generated diverse isolates of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen

Abstract

Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungal pathogen causing stripe rust, one of the most important diseases of wheat worldwide. Mutation is considered as one of the major mechanisms causing virulence changes in the pathogen population, but experimental evidence is limited. To study the effect of mutation on pathogen variation, we developed 33 mutant isolates by treating urediniospores of Pst race PSTv-18, avirulent to all of the 18 Yr single-gene lines used to differentiate Pst races, with ethyl methanesulfonate (EMS). These isolates were characterized as 24 races, including 19 new races, through virulence testing on the set of 18 wheat Yr single-gene differential lines; and as 21 multi-locus genotypes with 19 simple sequence repeat and 48 single-nucleotide polymorphism markers. Most of the mutant isolates had more than one avirulence gene and more than one marker locus changed compared to the wild type isolate, indicating that EMS is able to cause mutations at multiple genome sites. The results showed that mutation can cause substantial changes in both avirulence and other genomic regions. The different frequencies of virulence among the mutant isolates suggested homozygous or heterozygous avirulence loci in the parental isolate, or relative ease of mutation at some avirulence loci. The results are useful for understanding evolutionary mechanisms of the important fungal pathogen.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson P (1995) Mutagenesis. In: Epstein HF, Shakes DC (eds) C. elegans: modern biological analysis of an organism. Academic Press, New York, pp 31–58

    Google Scholar 

  2. Bahri B, Leconte M, de Vallavieille-Pope C, Enjalbert J (2009) Isolation of ten microsatellite loci in an EST library of the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Conserv Genet 10:1425–1428. https://doi.org/10.1007/s10592-008-9752-5

    CAS  Article  Google Scholar 

  3. Boyd LA, Smith PH, Hart N (2006) Mutants in wheat showing multipathogen resistance to biotrophic fungal pathogens. Plant Pathol 55:475–484. https://doi.org/10.1111/j.1365-3059.2006.01402.x

    Article  Google Scholar 

  4. Brockman HE, de Serres FJ, Ong TM, DeMarini DM, Katz AJ, Griffiths AJ, Stafford RS (1984) Mutation tests in Neurospora crassa: a report of the US environmental protection agency gene-tox program. Mutat Res/Rev Genet Toxicol 133:87–134. https://doi.org/10.1016/0165-1110(84)90004-6

    CAS  Article  Google Scholar 

  5. Campbell J, Zhang HT, Giroux MJ, Feiz L, Jin Y, Wang MN, Chen XM, Huang L (2012) A mutagenesis-derived broad-spectrum disease resistance locus in wheat. Theor Appl Genet 125:391–404. https://doi.org/10.1007/s00122-012-1841-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337. https://doi.org/10.1080/07060660509507230

    Article  Google Scholar 

  7. Chen XM (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627. https://doi.org/10.4236/ajps.2013.43080

    Article  Google Scholar 

  8. Chen XM (2017) Stripe rust epidemiology. In: Chen XM, Kang ZS (eds) Stripe rust. Springer, Dordrecht, pp 283–352

    Google Scholar 

  9. Chen XM, Kang ZS (2017) Introduction: history of research, symptoms, taxonomy of the pathogen, host range, distribution, and impact of stripe rust. In: Chen XM, Kang ZS (eds) Stripe rust. Springer, Dordrecht, pp 1–33

    Google Scholar 

  10. Chen XM, Line RF, Leung H (1993) Relationship between virulence variation and DNA polymorphism in Puccinia striiformis. Phytopathology 83:1489–1497

    CAS  Article  Google Scholar 

  11. Chen XM, Line RF, Leung H (1995) Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology 85:1335–1342

    CAS  Article  Google Scholar 

  12. Chen XM, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis 86:39–46. https://doi.org/10.1094/PDIS.2002.86.1.39

    Article  Google Scholar 

  13. Chen CQ, Zheng WM, Buchenauer H, Huang LL, Lu NH, Kang ZS (2009) Isolation of microsatellite loci from expressed sequence tag library of Puccinia striiformis f. sp. tritici. Mol Ecol Resour 9:236–238. https://doi.org/10.1111/j.1755-0998.2008.02423.x

    CAS  Article  PubMed  Google Scholar 

  14. Chen XM, Penman L, Wan AM, Cheng P (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333. https://doi.org/10.1080/07060661.2010.499271

    Article  Google Scholar 

  15. Chen J, Upadhyaya NM, Ortiz D, Sperschneider J, Li F, Bouton C, Breen S, Dong C, Xu B, Zhang X, Mago R, Newell K, Xia X, Bernoux M, Taylor JF, Steffenson B, Jin Y, Zhang P, Kanyuka K, Figueroa M, Ellis JG, Park RF, Dodds PN (2017) Loss of AvrSr50 by somatic exchange in stem rust leads to virulence for Sr50 resistance in wheat. Science 358:1607–1610. https://doi.org/10.1126/science.aao4810

    CAS  Article  PubMed  Google Scholar 

  16. Cheng P, Chen XM (2014) Virulence and molecular analyses support asexual reproduction of Puccinia striiformis f. sp. tritici in the US Pacific Northwest. Phytopathology 104:1208–1220. https://doi.org/10.1094/PHYTO-11-13-0314-R

    CAS  Article  PubMed  Google Scholar 

  17. Cheng P, Chen XM, Xu LS, See DR (2012) Development and characterization of expressed sequence tag-derived microsatellite markers for the wheat stripe rust fungus Puccinia striiformis f. sp. tritici. Mol Ecol Resour 12:779–781

    Article  Google Scholar 

  18. Cheng P, Chen XM, See DR (2016) Grass hosts harbor more diverse isolates of Puccinia striiformis than cereal crops. Phytopathology 106:362–371. https://doi.org/10.1094/PHYTO-07-15-0155-R

    CAS  Article  PubMed  Google Scholar 

  19. Enjalbert J, Duan X, Giraud T, Vautrin D, de Vallavieille-Pope C, Solignac M (2002) Isolation of twelve microsatellite loci, using an enrichment protocol, in the phytopathogenic fungus Puccinia striiformis f. sp. tritici. Mol Ecol Resour 2:563–565. https://doi.org/10.1046/j.1471-8286.2002.00322.x

    CAS  Article  Google Scholar 

  20. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258. https://doi.org/10.1073/pnas.2435133100

    CAS  Article  PubMed  Google Scholar 

  21. Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296. https://doi.org/10.1146/annurev.py.09.090171.001423

    Article  Google Scholar 

  22. Goyeau H, Halkett F, Zapater MF, Carlier J, Lannou C (2007) Clonality and host selection in the wheat pathogenic fungus Puccinia triticina. Fungal Genet Biol 44:474–483. https://doi.org/10.1016/j.fgb.2007.02.006

    CAS  Article  PubMed  Google Scholar 

  23. Griffiths AJ, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000) An introduction to genetic analysis, 7th edn. W. H. Freeman & Co Ltd., New York. https://www.ncbi.nlm.nih.gov/books/NBK21920/

  24. Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH, Comai L (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26:1382–1397. https://doi.org/10.1105/tpc.113.121590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Huang LL, Wang XL, Kang ZS, Zhao J (2005) Mutation of pathogenicity induced by ultraviolet radiation in Puccinia striiformis f. sp. tritici and RAPD analysis of mutants. Mycosystema 24:400–406

    CAS  Google Scholar 

  26. Jin Y, Szabo LJ, Carson M (2010) Century-old mystery of Puccinia striiformis life history solved with the identification of Berberis as an alternate host. Phytopathology 100:432–435. https://doi.org/10.1094/PHYTO-100-5-0432

    Article  PubMed  Google Scholar 

  27. Johnson R, Priestley RH, Taylor EC (1978) Occurrence of virulence in Puccinia striiformis for Compair wheat in England. Cereal Rusts Bull 6:11–13

    Google Scholar 

  28. Krieg DR (1963) Ethyl methanesulfonate-induced reversion of bacteriophage T4rII mutants. Genetics 48:561–580

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lei Y, Wang MN, Wan AM, Xia CJ, See DR, Zhang M, Chen XM (2016) Virulence and molecular characterization of experimental isolates of the stripe rust pathogen (Puccinia striiformis) indicate somatic recombination. Phytopathology 107:329–344. https://doi.org/10.1094/PHYTO-07-16-0261-R

    Article  PubMed  Google Scholar 

  30. Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. US Dep Agric Agric Res Serv Tech Bull 1788:1–44

    Google Scholar 

  31. Liu TL, Wan AM, Liu DC, Chen XM (2017) Changes of races and virulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen, in the United States from 1968 to 2009. Phytopathology 101:1522–1532. https://doi.org/10.1094/PDIS-12-16-1786-RE

    CAS  Article  Google Scholar 

  32. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. https://doi.org/10.1146/annurev-arplant-043014-114623

    CAS  Article  PubMed  Google Scholar 

  33. McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. https://doi.org/10.1146/annurev.phyto.40.120501.101443

    CAS  Article  PubMed  Google Scholar 

  34. Nelson RJ, Baraoidan MR, Vera Cruz CM, Yap IV, Leach JE, Mew TW, Leung H (1994) Relationship between phylogeny and pathotype for the bacterial blight pathogen of rice. Appl Environ Microbiol 60:3275–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Pahalawatta V, Chen XM (2005) Genetic analysis and molecular mapping of wheat genes conferring resistance to the wheat stripe rust and barley stripe rust pathogens. Phytopathology 95:427–432. https://doi.org/10.1094/PHYTO-95-0427

    CAS  Article  PubMed  Google Scholar 

  36. Rodriguez-Algaba J, Walter S, Sørensen CK, Hovmøller MS, Justesen AF (2014) Sexual structures and recombination of the wheat rust fungus Puccinia striiformis on Berberis vulgaris. Fungal Genet Biol 70:77–85. https://doi.org/10.1016/j.fgb.2014.07.005

    CAS  Article  PubMed  Google Scholar 

  37. Rohlf FJ (2009) NTSYSpc: numerical taxonomy system, ver. 2.21c

  38. Salcedo A, Rutter W, Wang S, Akhunova A, Bolus S, Chao S, Anderson N, De Soto MF, Rouse M, Szabo L, Bowden RL, Dubcovsky J, Akhunov E (2017) Variation in the AvrSr35 gene determines Sr35 resistance against wheat stem rust race Ug99. Science 358:1604–1606. https://doi.org/10.1126/science.aao7294

    CAS  Article  PubMed  Google Scholar 

  39. Sambrook J, Fritsch EF, Maniatis T (1982) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York

    Google Scholar 

  40. Sarin S, Bertrand V, Bigelow H, Boyanov A, Doitsidou M, Poole RJ, Narula S, Hobert O (2010) Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 185:417–430. https://doi.org/10.1534/genetics.110.116319

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Sasakuma T, Maan SS, Williams ND (1978) EMS-induced male-sterile mutants in euplasmic and alloplasmic common wheat. Crop Sci 18:850–853. https://doi.org/10.2135/cropsci1978.0011183X001800050043x

    Article  Google Scholar 

  42. Savant AR, Autade RH, Ghorpade BB, Fargade SA, Gaikar PS, Antre SH (2016) Study of the impact of EMS-induced mutations on the growth and morpho-phenological traits in pea (Pisum sativum L.). J Agric Biotechnol 1:29–34. https://doi.org/10.20936/JAB/160106

    Article  Google Scholar 

  43. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, Di Stasio M, Rössel N, Mendoza-Mendoza A, Pester D, Müller O (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548. https://doi.org/10.1126/science.1195330

    CAS  Article  PubMed  Google Scholar 

  44. Scott KJ, Maclean DJ (1969) Culturing of rust fungi. Annu Rev Phytopathol 7:123–146. https://doi.org/10.1146/annurev.py.07.090169.001011

    Article  Google Scholar 

  45. Sega GA (1984) A review of the genetic effects of ethyl methanesulfonate. Mutat. Res/Rev Genet Toxicol 134:113–142. https://doi.org/10.1016/0165-1110(84)90007-1

    CAS  Article  Google Scholar 

  46. Serrat X, Esteban R, Guibourt N, Moysset L, Nogués S, Lalanne E (2014) EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations. Plant Methods 10:5. https://doi.org/10.1186/1746-4811-10-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shang HS, Jing JX, Li ZQ (1994) Mutations induced by ultraviolent radiation affecting virulence in Puccinia striiformis. Acta Phytopathol Sin 25:347–351

    Google Scholar 

  48. Steele KA, Humphreys E, Wellings CR, Dickinson MJ (2001) Support for a stepwise mutation model for pathogen evolution in Australasian Puccinia striiformis f. sp. tritici by use of molecular markers. Plant Pathol 50:174–180. https://doi.org/10.1046/j.1365-3059.2001.00558.x

    CAS  Article  Google Scholar 

  49. Stubbs RW (1968) Artificial mutation in the study of the relationship between races of yellow rust of wheat. Proc Eur Mediterr Cereal Rusts Conf 2:60–62

    Google Scholar 

  50. Tian Y, Zhan GM, Chen XM, Tungruentragoon A, Lu X, Zhao J, Huang LL, Kang ZS (2016) Virulence and SSR marker segregation in a Puccinia striiformis f. sp. tritici population produced by selfing a Chinese isolate on Berberis shensiana. Phytopathology 106:185–191. https://doi.org/10.1094/PHYTO-07-15-0162-R

    CAS  Article  PubMed  Google Scholar 

  51. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. https://doi.org/10.1186/1471-2229-7-19

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Wan AM, Chen XM (2012) Virulence, frequency, and distribution of races of Puccinia striiformis f. sp. tritici and P. striiformis f. sp. hordei identified in the United States in 2008 and 2009. Plant Dis 96:67–74. https://doi.org/10.1094/PDIS-02-11-0119

    Article  Google Scholar 

  53. Wan AM, Chen XM (2014) Virulence characterization of Puccinia striiformis f. sp. tritici using a new set of Yr single-gene line differentials in the United States in 2010. Plant Dis 98:1534–1542. https://doi.org/10.1094/PDIS-01-14-0071-RE

    Article  PubMed  Google Scholar 

  54. Wan AM, Chen XM, Yuen J (2016) Races of Puccinia striiformis f. sp. tritici in the United States in 2011 and 2012 and comparison with races in 2010. Plant Dis 100:966–975. https://doi.org/10.1094/PDIS-10-15-1122-RE

    Article  PubMed  Google Scholar 

  55. Wan AM, Muleta KT, Zegeye H, Hundie B, Pumphrey MO, Chen XM (2017a) Virulence characterization of wheat stripe rust fungus Puccinia striiformis f. sp. tritici in Ethiopia and evaluation of Ethiopian wheat germplasm for resistance to races of the pathogen from Ethiopia and the United States. Plant Dis 101:73–80. https://doi.org/10.1094/PDIS-03-16-0371-RE

    CAS  Article  PubMed  Google Scholar 

  56. Wan AM, Wang XJ, Kang ZS, Chen XM (2017b) Variability of the stripe rust pathogen. In: Chen XM, Kang ZS (eds) Stripe rust. Springer, Dordrecht, pp 35–154

    Google Scholar 

  57. Wang MN, Chen XM (2015) Barberry does not function as an alternate host for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest due to teliospore degradation and barberry phenology. Plant Dis 99:1500–1506. https://doi.org/10.1094/PDIS-12-14-1280-RE

    CAS  Article  PubMed  Google Scholar 

  58. Wang GF, Jing JX, Wang MN, Wang Y (2004) Influence of chemical mutagen ethyl methanesulfonate (EMS) on germination rate of wheat stripe rust (Puccinia striiformis West.). J Northwest Sci-Tech Univ of Agri Forest 32:53–56

    CAS  Google Scholar 

  59. Wang MN, Wan AM, Chen XM (2015) Barberry as alternate host is important for Puccinia graminis f. sp. tritici but not for Puccinia striiformis f. sp. tritici in the U. S. Pacific Northwest. Plant Dis 99:1507–1516. https://doi.org/10.1094/PDIS-12-14-1279-RE

    CAS  Article  PubMed  Google Scholar 

  60. Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141. https://doi.org/10.1007/s10681-011-0360-y

    Article  Google Scholar 

  61. Wellings CR, McIntosh RA (1990) Puccinia striiformis f. sp. tritici in Australia: pathogenic changes during the first 10 years. Plant Pathol 39:316–325. https://doi.org/10.1111/j.1365-3059.1990.tb02509.x

    Article  Google Scholar 

  62. Worland AJ, Law CN, Shakoor A (1980) The genetical analysis of an induced height mutant in wheat. Heredity 45:61–71. https://doi.org/10.1038/hdy.1980.50

    Article  Google Scholar 

  63. Xia CJ, Wan AM, Wang MN, Jiwan DA, See DR, Chen XM (2016a) Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biol 120:729–744. https://doi.org/10.1016/j.funbio.2016.02.007

    Article  PubMed  Google Scholar 

  64. Xia CJ, Wang MN, Wan AM, Jiwan DA, See DR, Chen XM (2016b) Association analysis of SP-SNPs and avirulence genes in Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. Am J Plant Sci 7:126–137. https://doi.org/10.4236/ajps.2016.71014

    CAS  Article  Google Scholar 

  65. Yao QY, Wang GF, Xu ZB, Wang MN, Wang Y, Jing JX (2006) Virulent mutant in Puccinia striiformis induced by ethyl methyl sulfomar (EMS). J Northwest Sci-Tech Univ of Agri Forest 6:120–123

    Google Scholar 

  66. Yuan CY, Wang MN, Skinner DZ, See DR, Xia CJ, Guo XH, Chen XM (2017) Inheritance of virulence, construction of a linkage map, and mapping of virulence genes in Puccinia striiformis f. sp. tritici by virulence and molecular characterization of a sexual population through genotyping-by-sequencing. Phytopathology 108:133–141. https://doi.org/10.1094/PHYTO-04-17-0139-R

    Article  PubMed  Google Scholar 

  67. Zhao J, Wang MN, Chen XM, Kang ZS (2016) Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu Rev Phytopathol 54:207–228. https://doi.org/10.1146/annurev-phyto-080615-095851

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the US Department of Agriculture, Agricultural Research Service (Project No. 2090-22000-018-00D), Washington Grain Commission (Projects 13C-3061-5682), Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences, Agricultural Research Center, HATCH Project Number WNP00461 (13C-3061-4232), Washington State University, Pullman, WA 99164-6430, USA. The China Scholarship Council scholarship to Yuxiang Li is highly appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xianming Chen.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Disclaimer

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U. S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 574 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wang, M., See, D.R. et al. Ethyl-methanesulfonate mutagenesis generated diverse isolates of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. World J Microbiol Biotechnol 35, 28 (2019). https://doi.org/10.1007/s11274-019-2600-6

Download citation

Keywords

  • Avirulence
  • Mutation
  • Puccinia striiformis f. sp. tritici
  • Stripe rust
  • Wheat
  • Yellow rust