Bio-conversion of methane into high profit margin compounds: an innovative, environmentally friendly and cost-effective platform for methane abatement

  • Sara Cantera
  • Sergio Bordel
  • Raquel Lebrero
  • Juan Gancedo
  • Pedro A. García-Encina
  • Raúl MuñozEmail author


Despite the environmental relevance of CH4 and forthcoming stricter regulations, the development of cost-efficient and environmentally friendly technologies for CH4 abatement is still limited. To date, one of the most promising solutions for the mitigation of this important GHG consists of the bioconversion of CH4 into bioproducts with a high profit margin. In this context, methanotrophs have been already proven as cell-factories of some of the most expensive products synthesized by microorganisms. In the case of ectoine (1000 $ kg−1), already described methanotrophic genera such as Methylomicrobium can accumulate up to 20% (ectoine wt−1) using methane as the only carbon source. Moreover, α-methanotrophs, such as Methylosynus and Methylocystis, are able to store bioplastic concentrations up to 50–60% of their total cell content. More than that, methanotrophs are one of the greatest potential producers of methanol and exopolysaccharides. Although this methanotrophic factory could be enhanced throughout metabolic engineering, the valorization of CH4 into valuable metabolites has been already consistently demonstrated under continuous and discontinuous mode, producing more than one compound in the same bioprocess, and using both, single strains and specific consortia. This review states the state-of-the-art of this innovative biotechnological platform by assessing its potential and current limitations.


Methane abatement Market-value products Bio-transformation Ectoine Methanotrophs 



This research was funded by the Spanish Ministry of Economy and Competitiveness, the European FEDER program and the European Commission (CTM2015-73228-JIN, H2020- MSCA-IF-2016: CH4BioVal-GA:750126 and Red NOVEDAR). The financial support from the regional government of Castilla y León and the Sustainable Processes Institute are also gratefully acknowledged (UIC71).


  1. Agren R, Liu L, Shoaie S et al (2013) The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 9(3):e1002980. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akberdin IR, Thompson M, Hamilton R et al (2018) Methane utilization in Methylomicrobium alcaliphilum 20ZR: a systems approach. Sci Rep 8:2512. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anthony C (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci Prog 94:109–137CrossRefGoogle Scholar
  4. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 105(29):10203–10208CrossRefGoogle Scholar
  5. Bjorck CE, Dobson PD, Pandhal J (2018) Biotechnological conversion of methane to methanol: evaluation of progress and potential. AIMS Bioeng 5(1):1–38. CrossRefGoogle Scholar
  6. Cal AJ, Sikkema WD, Ponce MI et al (2016) Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int J Biol Macromol 87:302–307. CrossRefGoogle Scholar
  7. Campbell MA, Nyerges G, Kozlowski JA et al (2011) Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett 322(1):82–89. CrossRefPubMedGoogle Scholar
  8. Cantera S, Lebrero R, Rodríguez E et al (2017a) Continuous abatement of methane coupled with ectoine production by Methylomicrobium alcaliphilum 20Z in stirred tank reactors: a step further towards greenhouse gas biorefineries. J Clean Prod 152:134–141. CrossRefGoogle Scholar
  9. Cantera S, Lebrero R, Rodríguez S et al (2017b) Ectoine bio-milking in methanotrophs: a step further towards methane-based bio-refineries into high added-value products. Chem Eng J 328:44–48. CrossRefGoogle Scholar
  10. Cantera S, Muñoz R, Lebrero R et al (2018a) Technologies for the bioconversion of methane into more valuable products. Curr Opin Biotechnol 50:128–135CrossRefGoogle Scholar
  11. Cantera S, Sánchez-Andrea I, Lebrero R et al (2018b) Multi-production of high added market value metabolites from diluted methane emissions via methanotrophic extremophiles. Bioresour Technol 267:401–407. CrossRefPubMedGoogle Scholar
  12. Chistoserdova L, Kalyuzhnaya MG (2018) Current trends in methylotrophy. Trends Microbiol 26:703–714CrossRefGoogle Scholar
  13. Crombie A, Murrell C (2011) Chapter eight—development of a system for genetic manipulation of the facultative methanotroph Methylocella silvestris BL2. Methods Enzymol 495:119–133. CrossRefPubMedGoogle Scholar
  14. DiSpirito AA, Semrau JD, Murrell JC et al (2016) Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev 80:387–409. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duan C, Luo M, Xing X (2011) High-rate conversion of methane to methanol by Methylosinus trichosporium OB3b. Bioresour Technol 102(15):7349–7353. CrossRefPubMedGoogle Scholar
  16. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398CrossRefGoogle Scholar
  17. García-Pérez T, López JC, Passos F et al (2018) Simultaneous methane abatement and PHB production by Methylocystis hirsuta in a novel gas-recycling bubble column bioreactor. Chem Eng J 334:691–697. CrossRefGoogle Scholar
  18. Ge X, Yang l, Sheets JP et al (2016) Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 32:1460–1475CrossRefGoogle Scholar
  19. Han JS, Ahn CM, Mahanty B et al (2013) Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Appl Biochem Biotechnol 171(6):1487–1499. CrossRefPubMedGoogle Scholar
  20. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471PubMedPubMedCentralGoogle Scholar
  21. Helm J, Wendlandt KD, Jechorek M et al (2008) Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 105:1054–1061. CrossRefGoogle Scholar
  22. Henry CS, DeJongh M, Best AA et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982. CrossRefPubMedGoogle Scholar
  23. Hernández J, Gómez-Cuervo S, Omil F (2015) EPS and SMP as stability indicators during the biofiltration of diffuse methane emissions. Water Air Soil Pollut 226(10):1–12. CrossRefGoogle Scholar
  24. Hwang IY, Hur DH, Lee JH et al (2015) Batch conversion of methane to methanol using Methylosinus trichosporium OB3b as biocatalyst. J Microbiol Biotechnol 25(3):375–380. CrossRefPubMedGoogle Scholar
  25. Kalyuzhnaya MG, Khmelenina V, Eshinimaev B et al (2008) Classification of halo (alkali) philic and halo (alkali) tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. Int J Syst Evol Microbiol 58:591–596CrossRefGoogle Scholar
  26. Karthikeyan OP, Chidambarampadmavathy K, Nadarajan S et al (2015) Effect of CH4/O2 ratio on fatty acid profile and polyhydroxybutyrate content in a heterotrophic-methanotrophic consortium. Chemosphere 141:235–242CrossRefGoogle Scholar
  27. Khmelenina VN, Kalyuzhnaya MG, Starostina NG et al (1997) Isolation and characterization of halotolerant alkaliphilic methanotrophic bacteria from Tuva Soda lakes. Curr Microbiol 35:257–261. CrossRefGoogle Scholar
  28. Khmelenina VN, Sakharovskii VG, Reshetnikov AS et al (2000) Synthesis of osmoprotectants by halophilic and alkaliphilic methanotrophs. Microbiology 69:381CrossRefGoogle Scholar
  29. Khmelenina VN, Rozova ON, But SY et al (2015) Biosynthesis of secondary metabolites in methanotrophs: biochemical and genetic aspects (review). Appl Biochem Microbiol 51:150. CrossRefGoogle Scholar
  30. Koller M, Maršálek L, de Sousa Dias MM et al (2017) Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol 37:24–38CrossRefGoogle Scholar
  31. Kunte HJ, Lentzen G, Galinski EA (2014) Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products. Curr Biotechnol 3:10–25. CrossRefGoogle Scholar
  32. Liu L, Agren R, Bordel S, Nielsen J (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584(12):2556–2564. CrossRefPubMedGoogle Scholar
  33. López JC, Arnáiz E, Merchán L et al (2018) Biogas-based polyhydroxyalkanoates production by Methylocystis hirsuta: a step further in anaerobic digestion biorefineries. Chem Eng J 333:529–536. CrossRefGoogle Scholar
  34. Mahmoud AMA (2017) Biological conversion process of methane into methanol using mixed culture methanotrophic bacteria enriched from activated sludge system. Dissertation. University of York, CanadaGoogle Scholar
  35. Malashenko IP, Pirog TP, Romanovskaia V et al (2001) Search for methanotrophic producers of exopolysaccharides. Prikl Biokhim Mikrobiol 37:702–705. CrossRefPubMedGoogle Scholar
  36. Methanol institute (2018a) The methanol industry. Accessed 27 Nov 2018
  37. Methanol institute (2018b) Our members. Accessed 27 Nov 2018
  38. Mustakhimov II, Reshetnikov AS, Glukhov AS et al (2009) Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J Bacteriol 192(2):410–417CrossRefGoogle Scholar
  39. Myung J, Flanagan JCA, Waymouth RM et al (2017) Expanding the range of polyhydroxyalkanoates synthesized by methanotrophic bacteria through the utilization of omega-hydroxyalkanoate co-substrates. AMB Express 7:118. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Nguyen AD, Hwang IY, Lee OK et al (2018) Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Metab Eng 47:323–333. CrossRefPubMedGoogle Scholar
  41. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015CrossRefGoogle Scholar
  42. Pastor JM, Salvador M, Argandoña M et al (2010) Ectoines in cell stress protection: uses and biotechnological production. Biotechnol Adv 28:782–801. CrossRefPubMedGoogle Scholar
  43. Patil KR, Rocha I, Förster J, Nielsen J (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform 6:308. CrossRefGoogle Scholar
  44. Petersen LAH, Villadsen J, Jørgensen SB et al (2017) Mixing and mass transfer in a pilot scale U-loop bioreactor. Biotechnol Bioeng 114:344–354. CrossRefGoogle Scholar
  45. Pieja AJ, Sundstrom ER, Criddle CS (2011) Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77(17):6012–6019. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pieja AJ, Morse MC, Cal AJ (2017) Methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131. CrossRefGoogle Scholar
  47. Reshetnikov AS, Khmelenina VN, Trotsenko YA (2006) Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”. Arch Microbiol 184:286–297. CrossRefPubMedGoogle Scholar
  48. Reshetnikov AS, Khmelenina VN, Mustakhimov II et al (2011) Genes and enzymes of ectoine biosynthesis in halotolerant methanotrophs. Methods Enzymol 495:15–30. CrossRefPubMedGoogle Scholar
  49. Ritala A, Häkkinen ST, Toivari M et al (2017) Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Front Microbiol 8:2009CrossRefGoogle Scholar
  50. Rostkowski KH, Pfluger AR, Criddle CS (2013) Stoichiometry and kinetics of the PHB-producing type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP. Bioresour Technol 132:71–77. CrossRefGoogle Scholar
  51. Sheets JP, Ge X, Li YF, Yu Z et al (2016) Biological conversion of biogas to methanol using methanotrophs isolated from solid-state anaerobic digestate. Bioresour Technol 201:50–57. CrossRefPubMedGoogle Scholar
  52. Simon R, Priefer U, Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol 1:784–791. CrossRefGoogle Scholar
  53. Stępniewska Z, Goraj W, Kuźniar A et al (2014) Biosynthesis of ectoine by the methanotrophic bacterial consortium isolated from Bogdanka coalmine (Poland). Appl Biochem Microbiol 50:594–600. CrossRefGoogle Scholar
  54. Strong P, Laycock B, Mahamud S et al (2016a) The opportunity for high-performance biomaterials from methane. Microorganism 4:100–111. CrossRefGoogle Scholar
  55. Strong PJ, Kalyuzhnaya M, Silverman J et al (2016b) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323. CrossRefGoogle Scholar
  56. Sugimori D, Takeguchi M, Okura I (1995) Biocatalytic methanol production from methane with Methylosinus trichosporium OB3b: an approach to improve methanol accumulation. Biotechnol Lett 17(8):783–784. CrossRefGoogle Scholar
  57. Sundstrom ER, Criddle CS (2015) Optimization of methanotrophic growth and production of poly(3-hydroxybutyrate) in a high-throughput microbioreactor system. Appl Environ Microbiol 81(14):4767–4773CrossRefGoogle Scholar
  58. Torre A, Metivier A, Chu F et al (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G(B1). Microb Cell Fact 14:188. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wendlandt KD, Jechorek M, Helm J et al (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133. CrossRefGoogle Scholar
  60. Wilshusen JH, Hettiaratchi JP, De Visscher A et al (2004) Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environ Pollut 129:305–314. CrossRefPubMedGoogle Scholar
  61. Xin JY, Zhang YX, Zhang S et al (2007) Methanol production from CO2 by resting cells of the methanotrophic bacterium Methylosinus trichosporium IMV 3011. J Basic Microbiol 47(5):426–435. CrossRefPubMedGoogle Scholar
  62. Zhang T, Zhou J, Wang X et al (2016) Coupled effects of methane monooxygenase and nitrogen source on growth and poly-β-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b. J Environ Sci 52:49–57. CrossRefGoogle Scholar
  63. Zhen X, Wang Y (2015) An overview of methanol as an internal combustion engine fuel. Renew Sustain Energy Rev 52:477–493. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Sara Cantera
    • 1
  • Sergio Bordel
    • 1
    • 2
  • Raquel Lebrero
    • 1
    • 2
  • Juan Gancedo
    • 1
  • Pedro A. García-Encina
    • 1
    • 2
  • Raúl Muñoz
    • 1
    • 2
    Email author
  1. 1.Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringValladolid UniversityValladolidSpain
  2. 2.Institute of Sustainable ProcessesUniversidad de ValladolidValladolidSpain

Personalised recommendations