Skip to main content

Advertisement

Log in

On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial electrochemical system (MES) has attracted ever-growing interest as a promising platform for renewable energy conversion and bioelectrochemical remediation. Shewanella species, the dissimilatory metal reduction model bacteria with versatile extracellular electron transfer (EET) strategies, are the well-received microorganisms in diverse MES devices for various practical applications as well as microbial EET mechanism investigation. Meanwhile, the available genomic information and the unceasing established gene-editing toolbox offer an unprecedented opportunity to boost the applications of Shewanella species in MES. This review thoroughly summarizes the status quo of the applications of Shewanella species in microbial fuel cells for bioelectricity generation, microbial electrosynthesis for biotransformation of valuable chemicals and bioremediation of environment-hazardous pollutants with synoptical discussion on their EET mechanism. Recent advances in rational design and genetic engineering of Shewanella strains for either promoting the MES performance or broadening their applications are surveyed. Moreover, some emerging applications beyond electricity generation, such as biosensing and biocomputing, are also documented. The challenges and perspectives for Shewanella-based MES are also discussed elaborately for the sake of not only discovering new scientific lights on microbial extracellular respiratory but also propelling practical applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrevaya XC, Sacco NJ, Bonetto MC et al (2015) Analytical applications of microbial fuel cells. Part II: toxicity, microbial activity and quantification, single analyte detection and other uses. Biosens Bioelectron 63:591–601

    CAS  PubMed  Google Scholar 

  • Babu SS, Mohandass C, Raj ASV et al (2013) Multiple approaches towards decolorization and reuse of a textile dye (VB-B) by a marine bacterium Shewanella decolorationis. Water Air Soil Poll 224:1500

    Google Scholar 

  • Bretschger O, Cheung ACM, Mansfeld F, Nealson KH (2010) Comparative microbial fuel cell evaluations of Shewanella spp. Electroanalysis 22:883–894

    CAS  Google Scholar 

  • Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48

    PubMed  Google Scholar 

  • Cao DM, Xiao X, Wu YM et al (2013) Role of electricity production in the anaerobic decolorization of dye mixture by exoelectrogenic bacterium Shewanella oneidensis MR-1. Bioresource Technol 136:176–181

    CAS  Google Scholar 

  • Cao Y, Li X, Li F, Song H (2017) CRISPRi–sRNA: transcriptional-translational regulation of extracellular electron transfer in Shewanella oneidensis. ACS Synth Biol 6:1679–1690

    CAS  PubMed  Google Scholar 

  • Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474

    CAS  PubMed  Google Scholar 

  • Ding C-m, Lv M-l, Zhu Y et al (2015) Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew Chem Int Ed 54:1446–1451

    CAS  Google Scholar 

  • Drewniak L, Stasiuk R, Uhrynowski W, Sklodowska A (2015) Shewanella sp O23S as a driving agent of a system utilizing dissimilatory arsenate-reducing bacteria responsible for self-cleaning of water contaminated with arsenic. Int J Mol Sci 16:14409–14427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando E, Keshavarz T, Kyazze G (2012) Enhanced bio-decolourisation of acid orange 7 by Shewanella oneidensis through co-metabolism in a microbial fuel cell. Int Biodeterior Biodegrad 72:1–9

    CAS  Google Scholar 

  • Gao S-H, Peng L, Liu Y et al (2016a) Bioelectrochemical reduction of an azo dye by a Shewanella oneidensis MR-1 formed biocathode. Int Biodeterior Biodegrad 115:250–256

    CAS  Google Scholar 

  • Gao SH, Peng L, Liu YW et al (2016b) Bioelectrochemical reduction of an azo dye by a Shewanella oneidensis MR-1 formed biocathode. Int Biodeterior Biodegrad 115:250–256

    CAS  Google Scholar 

  • Golitsch F, Bücking C, Gescher J (2013) Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47:285–291

    CAS  PubMed  Google Scholar 

  • Gomaa OM, Fapetu S, Kyazze G, Keshavarz T (2017) The role of riboflavin in decolourisation of Congo red and bioelectricity production using Shewanella oneidensis MR-1 under MFC and non-MFC conditions. World J Microbiol Biotechnol 33:56

    PubMed  Google Scholar 

  • Han K, Yueh P-L, Qin L-J et al (2015) Deciphering synergistic characteristics of microbial fuel cell-assisted dye decolorization. Bioresour Technol 196:746–751

    CAS  PubMed  Google Scholar 

  • Han JC, Chen GJ, Qin LP, Mu Y (2017) Metal respiratory pathway-independent Cr isotope fractionation during Cr(VI) reduction by Shewanella oneidensis MR-1. Environ Sci Technol Lett 4:500–504

    CAS  Google Scholar 

  • Hu Y, Yang Y, Katz E, Song H (2015) Programming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells. Chem Commun 51:4184–4187

    CAS  Google Scholar 

  • Imran M, Arshad M, Asghar HN et al (2014) Potential of Shewanella sp strain IFN4 to decolorize azo dyes under optimal conditions. Int J Agric Biol 16:578–584

    CAS  Google Scholar 

  • Jeon J-M, Park H, Seo H-M et al (2015) Isobutanol production from an engineered Shewanella oneidensis MR-1. Bioprocess Biosyst Eng 38:2147–2154

    CAS  PubMed  Google Scholar 

  • Jiang S, Cuong Tu H, Lee J-H et al (2012) Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 87:621–624

    CAS  PubMed  Google Scholar 

  • Jorge AB, Hazael R (2016) Use of Shewanella oneidensis for energy conversion in microbial fuel cells. Macromol Chem Phys 217:1431–1438

    CAS  Google Scholar 

  • Kim BH, Ikeda T, Park HS et al (1999) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    CAS  Google Scholar 

  • Kumar R, Singh L, Zularisam A (2016) Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev 56:1322–1336

    CAS  Google Scholar 

  • Kumar A, Hsu LH-H, Kavanagh P et al (2017) The ins and outs of microorganism-electrode electron transfer reactions. Nat Rev Chem 1:0024

    CAS  Google Scholar 

  • La JA, Jeon J-M, Sang B-I et al (2017) A hierarchically modified graphite cathode with Au nanoislands, cysteamine, and Au nanocolloids for increased electricity-assisted production of isobutanol by engineered Shewanella oneidensis MR-1. ACS Appl Mater Interfaces 9:43563–43574

    CAS  PubMed  Google Scholar 

  • Le QAT, Kim HG, Kim YH (2018) Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzym Microb Technol 116:1–5

    CAS  Google Scholar 

  • Li SL, Freguia S, Liu SM et al (2010) Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosens Bioelectron 25:2651–2656

    CAS  PubMed  Google Scholar 

  • Li Z, Rosenbaum MA, Venkataraman A et al (2011) Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chem Commun 47:3060–3062

    CAS  Google Scholar 

  • Li F, Li Y, Sun L et al (2017a) Engineering Shewanella oneidensis enables xylose-fed microbial fuel cell. Biotechnol Biofuels 10:196

    PubMed  PubMed Central  Google Scholar 

  • Li S-W, Zeng RJ, Sheng G-P (2017b) An excellent anaerobic respiration mode for chitin degradation by Shewanella oneidensis MR-1 in microbial fuel cells. Biochem Eng J 118:20–24

    CAS  Google Scholar 

  • Li F, Li Y-X, Cao Y-X et al (2018a) Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat Commun 9:3637

    PubMed  PubMed Central  Google Scholar 

  • Li F, Li Y, Sun L et al (2018b) Modular engineering intracellular NADH regeneration boosts extracellular electron transfer of Shewanella oneidensis MR-1. ACS Synth Biol 7:885–895

    CAS  PubMed  Google Scholar 

  • Li Q, Feng X-L, Li T-T et al (2018c) Anaerobic decolorization and detoxification of cationic red X-GRL by Shewanella oneidensis MR-1. Environ Technol 39:2382–2389

    CAS  PubMed  Google Scholar 

  • Liu T, Yu YY, Deng XP et al (2015) Enhanced Shewanella biofilm promotes bioelectricity generation. Biotechnol Bioeng 112:2051–2059

    CAS  PubMed  Google Scholar 

  • Liu TX, Li XM, Li FB et al (2016) In situ spectral kinetics of Cr(VI) reduction by c-type cytochromes in a suspension of living Shewanella putrefaciens 200. Sci Rep 6:29592

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Shi L, Gu J-D (2018) Microbial electrocatalysis: redox mediators responsible for extracellular electron transfer. Biotechnol Adv 36:1815–1827

    CAS  PubMed  Google Scholar 

  • Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690

    CAS  PubMed  Google Scholar 

  • Mao F, Liu XH, Wu K et al (2018) Biodegradation of sulfonamides by Shewanella oneidensis MR-1 and Shewanella sp strain MR-4. Biodegradation 29:129–140

    CAS  PubMed  Google Scholar 

  • Min D, Cheng L, Zhang F et al (2017) Enhancing extracellular electron transfer of Shewanella oneidensis MR-1 through coupling improved flavin synthesis and metal-reducing conduit for pollutant degradation. Environ Sci Technol 51:5082–5089

    CAS  PubMed  Google Scholar 

  • Newton GJ, Mori S, Nakamura R et al (2009) Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Appl Environ Microbiol 75:7674–7681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ng IS, Chen TT, Lin R et al (2014) Decolorization of textile azo dye and Congo red by an isolated strain of the dissimilatory manganese-reducing bacterium Shewanella xiamenensis BC01. Appl Microbiol Biotechnol 98:2297–2308

    CAS  PubMed  Google Scholar 

  • Ogi T, Tamaoki K, Saitoh N et al (2012) Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae. Biochem Eng J 63:129–133

    CAS  Google Scholar 

  • Okamoto A, Hashimoto K, Nealson KH, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci USA 110:7856–7861

    CAS  PubMed  Google Scholar 

  • Pirbadian S, Barchinger SE, Leung KM et al (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci USA 111:12883–12888

    CAS  PubMed  Google Scholar 

  • Prevoteau A, Rabaey K (2017) Electroactive biofilms for sensing: reflections and perspectives. ACS Sens 2:1072–1085

    CAS  PubMed  Google Scholar 

  • Rabaey K, Rozendal RA (2010) Microbial electrosynthesis-revisiting the electrical route for microbial production. Nat Rev Microbiol 8:706–716

    CAS  PubMed  Google Scholar 

  • Riccobono G, Pastorella G, Vicari F et al (2017) Abatement of AO7 in a divided microbial fuel cells by sequential cathodic and anodic treatment powered by different microorganisms. J Electroanal Chem 799:293–298

    CAS  Google Scholar 

  • Ross DE, Flynn JM, Baron DB et al (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 6:e16649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review. J Power Sources 356:225–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HJ, Jung KA, Nam CW, Park JM (2017) A genetic approach for microbial electrosynthesis system as biocommodities production platform. Bioresour Technol 245:1421–1429

    CAS  PubMed  Google Scholar 

  • Si R-W, Zhai D-D, Liao Z-H et al (2015) A whole-cell electrochemical biosensing system based on bacterial inward electron flow for fumarate quantification. Biosens Bioelectron 68:34–40

    CAS  PubMed  Google Scholar 

  • Si RW, Yang Y, Yu YY et al (2016) Wiring bacterial electron flow for sensitive whole-cell amperometric detection of riboflavin. Anal Chem 88:11222–11228

    CAS  PubMed  Google Scholar 

  • Szczuka A, Morel FMM, Schaefer JK (2015) Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environ Sci Technol 49:7432–7438

    CAS  PubMed  Google Scholar 

  • Tao L, Xie M, Chiew GGY et al (2016) Improving electron trans-inner membrane movements in microbial electrocatalysts. Chem Commun 52:6292–6295

    CAS  Google Scholar 

  • TerAvest MA, Li ZJ, Angenent LT (2011) Bacteria-based biocomputing with cellular computing circuits to sense, decide, signal, and act. Energy Environ Sci 4:4907–4916

    Google Scholar 

  • Ueki T, Nevin KP, Woodard TL, Lovley DR (2016) Genetic switches and related tools for controlling gene expression and electrical outputs of Geobacter sulfurreducens. J Ind Microbiol Biotechnol 43:1561–1575

    CAS  PubMed  Google Scholar 

  • Vikrant K, Giri BS, Raza N et al (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresource Technol 253:355–367

    CAS  Google Scholar 

  • Wang J, Lu H, Zhou Y et al (2013a) Enhanced biotransformation of nitrobenzene by the synergies of Shewanella species and mediator-functionalized polyurethane foam. J Hazard Mater 252:227–232

    PubMed  Google Scholar 

  • Wang X, Gao N, Zhou Q (2013b) Concentration responses of toxicity sensor with Shewanella oneidensis MR-1 growing in bioelectrochemical systems. Biosens Bioelectron 43:264–267

    CAS  PubMed  Google Scholar 

  • Wang H, Luo H, Fallgren PH et al (2015) Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv 33:317–334

    PubMed  Google Scholar 

  • Wang GY, Zhang BG, Li S et al (2017a) Simultaneous microbial reduction of vanadium(V) and chromium(VI) by Shewanella loihica PV-4. Bioresour Technol 227:353–358

    CAS  PubMed  Google Scholar 

  • Wang Y-Z, Shen Y, Gao L et al (2017b) Improving the extracellular electron transfer of Shewanella oneidensis MR-1 for enhanced bioelectricity production from biomass hydrolysate. RSC Adv 7:30488–30494

    CAS  Google Scholar 

  • Wang W, Zhang BG, Liu QS et al (2018) Biosynthesis of palladium nanoparticles using Shewanella loihica PV-4 for excellent catalytic reduction of chromium(VI). Environ Sci Nano 5:730–739

    CAS  Google Scholar 

  • Webster DP, TerAvest MA, Doud DFR et al (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324

    CAS  PubMed  Google Scholar 

  • West EA, Jain A, Gralnick JA (2017) Engineering a native inducible expression system in Shewanella oneidensis to control extracellular electron transfer. ACS Synth Biol 6:1627–1634

    CAS  PubMed  Google Scholar 

  • Wu WG, Yang F, Liu X, Bai LL (2014) Influence of substrate on electricity generation of Shewanella loihica PV-4 in microbial fuel cells. Microb Cell Fact 13:69

    PubMed  PubMed Central  Google Scholar 

  • Wu X, Zou L, Huang Y et al (2018) Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells. Enzym Microb Technol 115:23–28

    CAS  Google Scholar 

  • Xafenias N, Zhang Y, Banks CJ (2015) Evaluating hexavalent chromium reduction and electricity production in microbial fuel cells with alkaline cathodes. Int J Environ Sci Technol 12:2435–2446

    CAS  Google Scholar 

  • Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47:1707–1714

    CAS  Google Scholar 

  • Yang Y, Ding Y, Hu Y et al (2015) Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth Biol 4:815–823

    CAS  PubMed  Google Scholar 

  • Yang Y, Liu T, Zhu X et al (2016) Boosting power density of microbial fuel cells with 3D nitrogen-doped graphene aerogel electrode. Adv Sci 3:1600097

    Google Scholar 

  • Yang Y, Kong G, Chen X et al (2017a) Electricity generation by Shewanella decolorationis S12 without cytochrome c. Front Microbiol 8:115

    Google Scholar 

  • Yang Y, Yu YY, Wang YZ et al (2017b) Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Biosens Bioelectron 98:338–344

    PubMed  Google Scholar 

  • Yang Y, Wang YZ, Fang Z et al (2018) Bioelectrochemical biosensor for water toxicity detection: generation of dual signals for electrochemical assay confirmation. Anal Bioanal Chem 410:1231–1236

    CAS  PubMed  Google Scholar 

  • Yi Y, Xie BZ, Zhao T, Liu H (2018) Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism. Bioresour Technol 265:415–421

    CAS  PubMed  Google Scholar 

  • Zhang HK, Lu H, Wang J et al (2014) Accelerating effect of bio-reduced graphene oxide on decolorization of Acid Red 18 by Shewanella algae. Appl Biochem Biotechnol 174:602–611

    CAS  PubMed  Google Scholar 

  • Zhang C-L, Yu Y-Y, Fang Z et al (2018) Recent advances in nitroaromatic pollutants bioreduction by electroactive bacteria. Process Biochem 70:129–135

    CAS  Google Scholar 

  • Zhou Y, Lu H, Wang J et al (2018) Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye Acid Red 18 by Shewanella sp RQs-106. J Hazard Mater 356:82–90

    CAS  PubMed  Google Scholar 

  • Zhu G, Yang Y, Liu J et al (2017) Enhanced photocurrent production by the synergy of hematite nanowire-arrayed photoanode and bioengineered Shewanella oneidensis MR-1. Biosens Bioelectron 94:227–234

    CAS  PubMed  Google Scholar 

  • Zou L, Qiao Y, Wu X-S, Li CM (2016a) Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells. J Power Sources 328:143–150

    CAS  Google Scholar 

  • Zou L, Qiao Y, Wu Z-Y et al (2016b) Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv Energy Mater 6:1501535

    Google Scholar 

  • Zou L, Lu Z, Huang Y et al (2017a) Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells. J Power Sources 359:549–555

    CAS  Google Scholar 

  • Zou L, Qiao Y, Zhong C, Li CM (2017b) Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells. Electrochim Acta 229:31–38

    CAS  Google Scholar 

  • Zou L, Qiao Y, Li CM (2018) Boosting microbial electrocatalytic kinetics for high power density: insights into synthetic biology and advanced nanoscience. Electrochem Energy Rev 1:567–596

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangxi Province (No. 20181BAB213004), the Fundamental Research Funds for the Central Universities (No. XDJK2018B003) and the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-er Long or Yan Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, L., Huang, Yh., Long, Ze. et al. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J Microbiol Biotechnol 35, 9 (2019). https://doi.org/10.1007/s11274-018-2576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2576-7

Keywords

Navigation