Biotechnological potential of bacteria isolated from cattle environments of desert soils in Sonora Mexico

Abstract

The aim of this research was to study the hydrolytic potential of bacteria isolated from cattle environments of two desert soils in one of the driest and hottest zones in America. A total of 26 points were sampled, 144 strains were isolated, and 50 strains were selected for the characterization of esterase, lipase, protease, and amylase activities and for 16S rRNA identification. Strains of the Bacillus, Pseudomonas, Acinetobacter, Enterobacter, Providencia, Escherichia, and Pantoea genera were identified. Comparisons of the proteolytic activity of the secretome from 14 strains (Bacillus n = 7, Escherichia n = 2; Providencia, Pseudomonas, Enterobacter, Pantoea and Acinetobacter n = 1) were performed. Four strains of Bacillus showed the highest proteolytic activity. These strains were characterized through a comparative analysis of pH and temperature as well as the effects of salt concentration on protease activity. Maximum proteolytic activity occurred in the range of pH 7–9 and temperatures between 50 and 70 °C for B. subtilis WD01, B. tequilensis WS11, B. tequilensis WS13, and B. tequilensis WS14. At a 20% NaCl concentration, the proteolytic activity retained was 71.4%, 65%, and 79.8% for WD01, WS11, and WS13, respectively; the activity of strain WS14 increased with 45% NaCl. Protease production by B. tequilensis WS14 with wheat, fish, and bone flours as low-cost substrates showed no differences between bone and fish flours and showed a decrease in protease production with wheat flour. The proteolytic activity in flour extracts with 20% NaCl was 82%, 75.61% and 38.04% for fish, bone and wheat flours, respectively. Data obtained in this work allow us to propose that strains isolated from environments with extreme conditions have a biotechnological potential.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adinarayana K, Ellaiah P, Prasad DS (2003) Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS Pharama Sci Tech 4(4):440–448

    Google Scholar 

  2. Altschul SF, Madden TL, Schäffer AA, Zhang J (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  Article  Google Scholar 

  3. Amulya K, Reddy WV, Mohan SV (2014) Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. Bioresour Technol 158:336–342

    CAS  Article  Google Scholar 

  4. Asoodeh A, Chamani J, Lagzian M (2010) A novel thermostable, acidophilic α-amylase from a new thermophilic “Bacillus sp Ferdowsicous” isolated from Ferdows hot mineral spring in Iran:Purification and biochemical characterization. Int J Biol Macromol 46:289–297

    CAS  Article  Google Scholar 

  5. Bose A, Chawdhary V, Keharia H, Subramaniam RB (2014) Production and charcaterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann Microbiol 64:343–354

    CAS  Article  Google Scholar 

  6. Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL (2003) Soil enzymes in changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234

    Article  Google Scholar 

  7. Chikere CB, Obieze CC, Okerentugba P (2015) Molecular assesment of microbial species involved in the biodegradation of crude oil in saline niger delta sediments using bioreactors. J Bioremed Biodeg 6:2–7

    Article  Google Scholar 

  8. CONAFOR-UACh (2013) Línea base nacional de degradación de tierras y desertificación. Informe final. Comisión Forestal y Universidad Autónoma de Chapingo

  9. Cosivi O (2008) Etiology and ecology. Turnbull P,(ed) Anthrax in human and animales. Geneva: World Health Organization, pp 8–16

    Google Scholar 

  10. Dorra G, Ines K. Imen BS, Laurent C, Sana A, Olfa T, Pascal C, Thierry J, Ferid L (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol 111:342–351

    CAS  Article  Google Scholar 

  11. dos Santos Aguilar JG, Sato HH (2017) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253–262

    Google Scholar 

  12. Ellouz Y, Bayoudh A, Kammoun S, Gharsallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresour Technol 80:49–51

    CAS  Article  Google Scholar 

  13. Forgetta V, Rempel F, Malouin R, Vaillancourt R (2012) Pathogenic and multidrug resistant Escherichia fergusonii from broiler chicken. Poult Sci 91:512–525

    CAS  Article  Google Scholar 

  14. García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA (2009) Advantages of a proteolytic extract by Aspeguillus oryzae from fish flour over a commercial proteolytic preparation. Food Chem 112:604–608

    Article  Google Scholar 

  15. Gatson JW, Benz BF, Chandrasekaran C, Satomi M (2006) Bacillus tequilensis sp. Nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int J Syst Evol Microbiol 56:1475–1484

    CAS  Article  Google Scholar 

  16. Gopal N, Hill C, Ross P, Beresford T, Fenelon MA, Cotter P (2015) The prevalence and Control of Bacillus and related spore-forming bacteria in the dairy industry. Frotn Microbiol 6:1–18

    Google Scholar 

  17. Grimont F, Grimont PA (2006) The Genus Enterobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer, Singapore, pp 197–214

    Google Scholar 

  18. Habib SMA, Fakhruddin ANM, Begum S, Ahmed MM (2012) Isolation and screening of thermo stable extracellular alkaline protease producing bacteria from tannery effluent. J Sci Res 4:515–522

    CAS  Article  Google Scholar 

  19. Hejnfelt A, Angelidaki I (2009) Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy 33:1046–1054

    CAS  Article  Google Scholar 

  20. Herranen M, Kariluoto S, Edelmann M, Piironen V (2010) Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int J Food Microbiol 142:277–285

    CAS  Article  Google Scholar 

  21. Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S (2012) Purificaction and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.; a potential additive for laundry detergents. Bioresour Technol 115:228–236

    CAS  Article  Google Scholar 

  22. Jouadi NZ, Rekik H, Elhoul MB, Rahem FZ, Hila CG, Aicha HS, Badis A, Tumi A, Bejar S, Jaouadi B (2015) A novel keratinase from Bacillus Tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol Macromol 79:952–964

    Article  Google Scholar 

  23. Kang SJ, Choi NS, Choi JH, Lee JS (2009) Brevundimonas naejangsanensis sp. Nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into genus Brevundimonas as Brevundimonas bullata comb.nov. Int J Syst Evol Microbiol 59:3155–3160

    CAS  Article  Google Scholar 

  24. Khan I, Gupta P, Vakhlu J (2011) Thermo-alkaliphilic halotolerant detergent compatible protease(s) of Bacillus tequilensis MTCC 9585. Afr J Microbiol Res 5:3968–3975

    CAS  Article  Google Scholar 

  25. Kumar AG, Nagesh N, Prabhakar TG, Sekaran G (2008) Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour Technol 99:2364–2372

    CAS  Article  Google Scholar 

  26. Lefebvre B, Diarra MS, Giguère K, Roy G (2005) Antibiotic resistance and hypermutability of Escherichia coli O157 from feedlot cattle treated with growth promotin agents. J Food Prot 68:2411–2419

    CAS  Article  Google Scholar 

  27. Lehner A, Riedel K, Rattei T, Ruepp A (2006) Molecular characterization of the α-glucosidase activity in Enterobacter sakasakii reveals the presence of a putative gene cluster for palatinose metabolism. Syst Appl Microbiol 29:609–625

    CAS  Article  Google Scholar 

  28. Li S, Yang X, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:1–11

    Google Scholar 

  29. Lyngwi NA, Joshi SR (2014) Economically important Bacillus and related genera: a mini review. In: Arnab S (ed) Biology of useful plants and microbes. Narosa Publishing House, New Delhi, pp 31–43

    Google Scholar 

  30. Manikandan M, Pašic L, Kannan V (2009) Purification and biological characterization of a Halophilic thermostable protease from Haloferax lucentensis VKMM 007. World J Microbiol Biotechnol 25:2247–2256

    CAS  Article  Google Scholar 

  31. Marchesi JR, Sato T, Weightman AJ, Martin TA (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Martínez-Martínez M, Alcaide M, Tchigvintsev A, Reva O (2013) Biochemical diversity of carboxyl esterases and lipases from lake Arreo (Spain): a metagenomic approach. Appl Environ Microbiol 79:3553–3562

    Article  Google Scholar 

  33. Martins ML, Pinto CLO, Rocha RB, de Araújo EF, Vanetti MCD (2006) Genetic diversity of Gram negative, proteolytic, Psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 111:144–148

    CAS  Article  Google Scholar 

  34. Mateos-Díaz E, Rodríguez JA, Camacho-Ruíz MA, Mateos-Díaz JC (2012) High-throughput screening method for lipases/esterases. In: Sandoval G (eds). Springer, New York, pp 89–100

    Google Scholar 

  35. Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid state fermentation (SSF) condition usig Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochem Eng J 39:353–361

    CAS  Article  Google Scholar 

  36. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611

    Article  Google Scholar 

  37. Nistchke M, Costa S, Contiero J (2011) Rhamnolipids and PHZs: recent reports on pseudomonas. Derived molecules of increasing industrial interest. Process Biochem 46:621–630

    Article  Google Scholar 

  38. Okamoto DN, Kondo MY, Santos JAN, Nakajima S, Hiraga K, Oda K, Juliano MA, Juliano L, Gouvea IE (2009) Kinetic analysis of salting activation of subtilisin-like halophilic protease. Biochim Biophys Acta 1794:363–373

    Google Scholar 

  39. Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem 40:3569–3575

    CAS  Article  Google Scholar 

  40. Pathak K, Bose A, Keharia H (2014) Characterization of novel lipopeptides produced by Bacillus tequilensis P15 using liquid chromatography coupled electron spray ionization tandem mass spectrometry (LC-ESI-MS/MS). Int J Pept Res Ther 20:133–143

    CAS  Article  Google Scholar 

  41. Pointing S, Fierer N, Smith GJ, Steinberg PD (2016) Quantifying human impact on Earth’s microbiome. Nat Microbiol 1:1–2

    Article  Google Scholar 

  42. Rana A, Saharan B, Joshi M, Prasanna R (2011) Identification of multi-trait PGPR isolates and evaluation their potential as inoculants for wheat. Ann Microbiol 61:893–900

    CAS  Article  Google Scholar 

  43. Rezaei F, Xing D, Wagner R, Regan JM (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environm Microbiol 75:3673–3678

    CAS  Article  Google Scholar 

  44. Rezzonico F, Smits TH, Montesinos E, Frey JE (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204

    Article  Google Scholar 

  45. Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake. Iran. J Ind Microbiol Biotechnol 36:333–340

    CAS  Article  Google Scholar 

  46. Satyanarayana T, Sharma A, Metha D, Puri AK, Kumar V, Nisha M, Joshi S (2012) Biotechnological applications of biocatalysts from firmicutes Bacillus and Geobacillus species. In: Satyanarayana T, Narain B, Johri N, Prakash N (eds) Micoorganisms in sustainable agliculture and biotechnology. Springer, New York, pp 343–380

    Google Scholar 

  47. Shivanand P, Jayaraman G (2009) Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris Strain VITP4 isolated from Kumta coast. Process Biochem 44:1088–1094

    CAS  Article  Google Scholar 

  48. Siraj NM, Sood K, Yadav RNS (2017) Isolation and identificaction of potential probiotic bacteria from Cattle Farm Soil in Dibrugarh District. AiM 7:265–279

    CAS  Article  Google Scholar 

  49. Slepecky RA, Hemphill HE (2006) The genus Bacillus—nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K (eds) The prokaryotes. A handbook of the biology of bacteria. Springer Science Bussines Media, New York, pp 530–555

    Google Scholar 

  50. Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS ONE 9:e96951

    Article  Google Scholar 

  51. Soundra FJ, Ramya VS, Neelam D, Suresh BG, Siddalingeshwara KG, Venngopa N. Vishwanatha T (2012) Isolation, production and characterization of protease from Bacillus sp isolated fro soil sample. J Microbiol Biotechnol Res 2:163–168

    Google Scholar 

  52. Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32

    Article  Google Scholar 

  53. Tsuchida O, Yamagata Y, Ishizuka T, Arai T (1986) An Alkaline proteinase of an Alkalophilic Bacillus sp. Curr Microbiol 14:7–12

    CAS  Article  Google Scholar 

  54. Vanboekhoven K, Ryngaert A, Wattiau P, De Mot R (2004) Acinetobacter diversity in environmental samples assessed by 16 S rRNA gene PCR-DGGE fingerprinting. FEMS Microbiol Ecol 50:37–50

    Article  Google Scholar 

  55. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological resistance. Food Res Int 36:895–904

    CAS  Article  Google Scholar 

  56. Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Consejo Nacional de Ciencia y Tecnología in México Grant-251744-Infrastructure.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Itzamná Baqueiro-Peña.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baqueiro-Peña, I., Asaff-Torres, A., Kirchmayr, M.R. et al. Biotechnological potential of bacteria isolated from cattle environments of desert soils in Sonora Mexico. World J Microbiol Biotechnol 35, 4 (2019). https://doi.org/10.1007/s11274-018-2574-9

Download citation

Keywords

  • Protease
  • Microbial bioprospecting
  • Soil
  • Growth promoting