Andrade LF, de Souza GLOD, Nietsche S et al (2014) Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol 52:27–34. https://doi.org/10.1007/s12275-014-3019-2
CAS
Article
PubMed
Google Scholar
Annicchiarico G, Caternolo G, Rossi E, Martiniello P (2011) Effect of manure vs. fertilizer inputs on productivity of forage crop models. Int J Environ Res Public Health 8:1893–1913. https://doi.org/10.3390/ijerph8061893
Article
PubMed
PubMed Central
Google Scholar
Baldani JI, Reis VM, Videira SS et al (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil 384:413–431. https://doi.org/10.1007/s11104-014-2186-6
CAS
Article
Google Scholar
Baumhardt RL, Tolk JA, Howell TA, Rosenthal WD (2007) Sorghum management practices suited to varying irrigation strategies. Agron J 99:665–672. https://doi.org/10.2134/agronj2006.0092
Article
Google Scholar
Bergamaschi C, Roesch LFW, Quadros PD de, Camargo FA de O (2007) Ocorrência de bactérias diazotróficas associadas a cultivares de sorgo forrageiro. Ciência Rural 37:727–733
Article
Google Scholar
Berraquero FR, Baya B, Cormenzana AR (1976) Establecimiento de índices para el estudio de la solubilización de fosfatos por bacterias del suelo. Ars Pharm 17:399–406
Google Scholar
Brady C, Cleenwerck I, Venter S et al (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov a. Syst Appl Microbiol 36:309–319. https://doi.org/10.1016/j.syapm.2013.03.005
Article
PubMed
Google Scholar
Brígido C, Glick BR, Oliveira S (2017) Survey of plant growth-promoting mechanisms in native portuguese chickpea mesorhizobium isolates. Microb Ecol 73:900–915. https://doi.org/10.1007/s00248-016-0891-9
Article
PubMed
Google Scholar
da Costa EM, Nóbrega RSA, de Carvalho F et al (2013) Plant growth promotion and genetic diversity of bacteria isolated from cowpea nodules. Pesqui Agropecu Bras 48:1275–1284. https://doi.org/10.1590/S0100-204X2013000900012
Article
Google Scholar
de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419. https://doi.org/10.1590/S1415-475738420150053
Article
PubMed
PubMed Central
Google Scholar
Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa Agrobiologia, Seropédica
Google Scholar
dos Santos MCM, dos Santos DR, Bakke A, Bakke IA (2013) Ocorrência e atividade de bactérias diazotróficas em forrageiras cultivadas na rregião semiárida do Brasil. Caatinga 26:27–34
Google Scholar
dos Santos CLR, Alves GC, de Matos Macedo AV et al (2017) Contribution of a mixed inoculant containing strains of Burkholderia spp. and Herbaspirillum ssp. to the growth of three sorghum genotypes under increased nitrogen fertilization levels. Appl Soil Ecol 113:96–106. https://doi.org/10.1016/j.apsoil.2017.02.008
Article
Google Scholar
Felestrino ÉB, Vieira IT, Caneschi WL et al (2018) Biotechnological potential of plant growth-promoting bacteria from the roots and rhizospheres of endemic plants in ironstone vegetation in southeastern Brazil. World J Microbiol Biotechnol 34:156. https://doi.org/10.1007/s11274-018-2538-0
CAS
Article
PubMed
Google Scholar
Fernandes Júnior PI, Pereira GMD, Perin L et al (2013) Diazotrophic bacteria isolated from wild rice Oryza glumaepatula (Poaceae) in the Brazilian Amazon. Rev Biol Trop 61:991–999
Article
Google Scholar
Fernandes-Júnior PI, Aidar de ST, Morgante CV, et al (2015) The resurrection plant Tripogon spicatus (Poaceae) harbors a diversity of plant growth promoting bacteria in northeastern Brazilian Caatinga. Rev Bras Cienc do Solo 39:993–1002. https://doi.org/10.1590/01000683rbcs20140646
Article
Google Scholar
Ferrara FIS, Oliveira ZM, Gonzales HHS et al (2012) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417. https://doi.org/10.1007/s11104-011-1042-1
CAS
Article
Google Scholar
Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc e Agrotecnol 35:1039–1042
Article
Google Scholar
Fretes CE, De Suryani R, Purwestri YA, Nuringtyas TR (2018) Diversity of endophytic bacteria in sweet sorghum (Sorghum bicolor (L.) Moench) and their potential for promoting plant growth. Indian J Sci Technol 11:1–10. https://doi.org/10.17485/ijst/2018/v11i11/120283
CAS
Article
Google Scholar
Govindasamy V, Raina SK, George P et al (2017) Functional and phylogenetic diversity of cultivable rhizobacterial endophytes of sorghum [Sorghum bicolor (L.) Moench]. Antonie Van Leeuwenhoek 110:925–943. https://doi.org/10.1007/s10482-017-0864-0
CAS
Article
PubMed
Google Scholar
Hai B, Diallo NH, Sall S et al (2009) Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl Environ Microbiol 75:4993–5000. https://doi.org/10.1128/AEM.02917-08
CAS
Article
PubMed
PubMed Central
Google Scholar
Haiyambo DH, Chimwamurombe PM, Reinhold-Hurek B (2015a) Isolation and screening of rhizosphere bacteria from grasses in East Kavango region of Namibia for plant growth promoting characteristics. Curr Microbiol 71:566–571. https://doi.org/10.1007/s00284-015-0886-7
CAS
Article
PubMed
Google Scholar
Haiyambo DH, Reinhold-Hurek B, Chimwamurombe PM (2015b) Effects of plant g rowth promoting bacterial isol ates from Kavango on the vegetative growth of Sorghum bicolor. Afr J Microbiol Res 9:725–729
Article
Google Scholar
Hons FM, Moresco RF, Wiedenfeld RP, Cothren JT (1986) Applied nitrogen and phosphorus effects on yield and nutrient uptake by high-energy sorghum produced for grain and biomass. Agron J 78:1069–1078. https://doi.org/10.2134/agronj1986.00021962007800060026x
Article
Google Scholar
Hungria M, Campo RJ, Souza EM, Pedrosa FO (2010) Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331:413–425. https://doi.org/10.1007/s11104-009-0262-0
CAS
Article
Google Scholar
Hungria M, Nogueira MA, Araujo RS (2016) Inoculation of Brachiaria spp. with the plant growth-promoting bacterium Azospirillum brasilense: an environment-friendly component in the reclamation of degraded pastures in the tropics. Agric Ecosyst Environ 221:125–131. https://doi.org/10.1016/j.agee.2016.01.024
CAS
Article
Google Scholar
Kämpfer P, Ruppel S, Remus R (2005) Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221. https://doi.org/10.1016/j.syapm.2004.12.007
CAS
Article
PubMed
Google Scholar
Kavamura VN, Santos SN, Silva da JL, et al (2013a) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res. https://doi.org/10.1016/j.micres.2012.12.002
Article
PubMed
Google Scholar
Kavamura VN, Taketani RG, Lançoni MD et al (2013b) Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the brazilian caatinga biome. PLoS ONE. https://doi.org/10.1371/journal.pone.0073606
Article
Google Scholar
Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul 35:1074–1087. https://doi.org/10.1007/s00344-016-9604-3
CAS
Article
Google Scholar
Lin W, Okon Y, Hardy RWF (1983) Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–1779
CAS
PubMed
PubMed Central
Google Scholar
Lopes KBA, Carpentieri-Pipolo V, Oro TH et al (2016) Culturable endophytic bacterial communities associated with field-grown soybean. J Appl Microbiol 120:740–755. https://doi.org/10.1111/jam.13046
CAS
Article
Google Scholar
Mando A, Ouattara B, Sédogo M et al (2005) Long-term effect of tillage and manure application on soil organic fractions and crop performance under Sudano-Sahelian conditions. Soil Tillage Res 80:95–101. https://doi.org/10.1016/j.still.2004.03.002
Article
Google Scholar
Mareque C, Taulé C, Beracochea M, Battistoni F (2015) Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann Microbiol 65:1057–1067. https://doi.org/10.1007/s13213-014-0951-7
CAS
Article
Google Scholar
Meng X, Bertani I, Abbruscato P et al (2015) Draft genome sequence of rice endophyte-associated isolate Kosakonia oryzae KO348. Genome Announc 3:e00594–e00515. https://doi.org/10.1128/genomeA.00594-15
Article
PubMed
PubMed Central
Google Scholar
Pariona-Llanos R, Ferrara FIS, Gonzales HHS, Barbosa HR (2010) Influence of organic fertilization on the number of culturable diazotrophic endophytic bacteria isolated from sugarcane. Eur J Soil Biol 46:387–393. https://doi.org/10.1016/j.ejsobi.2010.08.003
Article
Google Scholar
Pereira JAR, Cavalcante VA, Baldani JI, Döbereiner J (1989) Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. In: Skinner FA, Boddey RM, Fendrik I (eds) Nitrogen Fixation with Non-Legumes: The Fourth International Symposium on `Nitrogen Fixation with Non-Legumes’, Rio de Janeiro, 23–28 August 1987. Springer Netherlands, Dordrecht, pp 219–224
Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103
CAS
Article
PubMed
Google Scholar
Ribeiro CM, Cardoso EJBN (2012) Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia). Microbiol Res 167:69–78. https://doi.org/10.1016/j.micres.2011.03.003
CAS
Article
PubMed
Google Scholar
Rodrigues Neto J, Malavolta Jr VA , Victor O (1986) Meio simples para o isolamento e cultivo de Xanthomonas campestris pv. citri tipo B. Summa Phytopathol 12:32
Google Scholar
Sánchez-Cañizares C, Jorrín B, Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196. https://doi.org/10.1016/j.mib.2017.07.001
CAS
Article
PubMed
Google Scholar
Sarathambal C, Ilamurugu K, Balachandar D et al (2015) Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Appl Soil Ecol 87:1–10. https://doi.org/10.1016/j.apsoil.2014.11.004
Article
Google Scholar
Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285. https://doi.org/10.1111/j.1472-765X.1995.tb00446.x
CAS
Article
Google Scholar
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9
CAS
Article
PubMed
Google Scholar
Sharma S, Singh DK (2017) Temporal variations in diazotrophic communities and nifH transcripts level across the agricultural and fallow land at Jaipur, Rajasthan, India. Indian J Microbiol 57:92–99. https://doi.org/10.1007/s12088-016-0634-0
Article
PubMed
Google Scholar
Signor D, Cerri CEP (2013) Nitrous oxide emissions in agricultural soils: a review. Pesqui Agropecuária Trop 43:322–338. https://doi.org/10.1590/S1983-40632013000300014
Article
Google Scholar
Silva K, Perin L, Gomes MDL et al (2016) Diversity and capacity to promote maize growth of bacteria isolated from the Amazon region. Acta Amaz 46:111–118. https://doi.org/10.1590/1809-4392201502502
Article
Google Scholar
Sylvester-Bradley R, Asakawa N, La Torraca S et al (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22
Article
Google Scholar
Valetti L, Iriarte L, Fabra A (2018) Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Appl Soil Ecol 132:1–10. https://doi.org/10.1016/j.apsoil.2018.08.017
Article
Google Scholar
Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991
CAS
Article
PubMed
PubMed Central
Google Scholar
Witzel K, Strehmel N, Baldermann S et al (2017) Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656T. Plant Soil 419:557–573. https://doi.org/10.1007/s11104-017-3371-1
CAS
Article
Google Scholar
Yoon S-H, Ha S-M, Kwon S et al (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Kang X, Liu H et al (2018) Endophytes isolated from ginger rhizome exhibit growth promoting potential for Zea mays. Arch Agron Soil Sci 64:1302–1314. https://doi.org/10.1080/03650340.2018.1430892
CAS
Article
Google Scholar