Skip to main content
Log in

Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cementation of salt-containing soils can be achieved by salt-tolerant or halophilic calcite precipitation bacteria. Therefore, the isolation of calcite-producing bacteria in the presence of salt is the first step in the microbial cementation of saline soils. Urease producing bacteria can cause calcite nano-crystals to precipitate by producing urease in the presence of urea and calcium. The purpose of this study was to isolate urease producing halophilic bacteria in order to make calcite precipitate in saline soil. The calcite and the properties of the strains were further analyzed by X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray detector. In this study, a total of 110 halophilic strains were isolated, from which 58 isolates proved to have the ability of urease production. Four strains were identified to produce nano-calcite using urease activity in the precipitation medium. The XRD studies showed that the size of these particles was in the range of 40–60 nm. Strain H3 revealed that calcite is mostly produced in the precipitation medium containing 5% salt in comparison with other strains. This strain also produced calcite precipitates in the precipitation medium containing 15% salt. Phylogenetic analysis indicated that these isolates are about 99–100% similar to Staphylococcus saprophyticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bansal R, Dhami NK, Mukherjee A, Reddy MS (2016) Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. J Ind Microbiol Biotechnol 43:1497–1505

    Article  CAS  PubMed  Google Scholar 

  • Baskar S, Baskar R, Mauclaire L, Mckenzie JA (2005) Role of microbial community in stalactite formation, Sahastradhara caves, Dehradun, India. Curr Sci 88:1305–1308

    CAS  Google Scholar 

  • Brenner DJ, Krieg NR, Staley JT, Garrity GM (2005) Bergey’s manual of systematic bacteriology, vol 2. Springer, New York, pp 392–420

    Google Scholar 

  • Carpa R, Keul A, Muntean V, Dobrotă C (2014) Characterization of halophilic bacterial communities in Turda Salt Mine (Romania). Orig Life Evol Biosph 44:223–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot JP (2000) Bacterial roles in the precipitation of carbonate minerals. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Heidelberg, pp 32–39

    Chapter  Google Scholar 

  • Chahal N, Rajor A, Siddique R (2011) Calcium carbonate precipitation by different bacterial strains. Afr J Biotechnol 10:8359–8372

    Article  CAS  Google Scholar 

  • Cheng L, Shahin M, Cord-Ruwisch R (2014) Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments. Géotechnique 64:1010–1013

    Article  Google Scholar 

  • Del Moral A, Roldan E, Navarro J, Monteoliva-Sanchez M, Ramos-Cormenzana A (1987) Formation of calcium carbonate crystals by moderately halophilic bacteria. Geomicrobiol J 5:79–87

    Article  Google Scholar 

  • Dhami NK, Reddy M, Mukherjee A (2012) Biofilm and microbial applications in biomineralized concrete. In: Seto J (ed) Advanced topics in biomineralization. InTech, Rijeka, pp 137–164

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2016) Significant indicators for biomineralisation in sand of varying grain sizes. Constr Build Mater 104:198–207

    Article  CAS  Google Scholar 

  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    Article  CAS  PubMed  Google Scholar 

  • Ferrer MR, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado R, Ramos-Cormenzana A (1988a) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227

    Article  CAS  Google Scholar 

  • Ferrer MR, Quevedo-Sarmiento J, Bejar V, Delgado R, Ramos-Cormenzana A, Rivadeneyra MA (1988b) Calcium carbonate formation by Deleya halophila: effect on salt concentration and incubation temperature. Geomicrobiol J 6:49–57

    Article  CAS  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74:2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behavior in salt stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Gökçekus H, Türker U, LaMoreaux JW (2011) Survival and sustainability: environmental concerns in the 21st century. Springer, Berlin

    Book  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  • Hammes F, Boon N, Villiers JD, de Villiers J, Verstraete W, Douglas Siciliano S (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69:4901–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  Google Scholar 

  • Kim G, Youn H (2016) Microbially induced calcite precipitation employing environmental isolates. Materials 9:468

    Article  PubMed Central  Google Scholar 

  • Mortensen BM, DeJong JT (2011) Strength and stiffness of MICP treated sand subjected to various stress paths. In: Han J, Alzamora DA (eds) Geo-Frontiers 2011: advances in geotechnical engineering, vol 211. ASCE Geotechnical Special Publication, Dallas, pp 4012–4020

    Chapter  Google Scholar 

  • Novitsky JA (1981) Calcium carbonate precipitation by marine bacteria. Geomicrobiol J 2:375–388

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Delgado R, Quesada E, Ramos-Cormenzana A (1991) Precipitation of calcium carbonate by Deleya halophila in media containing NaCl as sole salt. Curr Microbiol 22:185–190

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Delgado R, Delgado G, Moral A, Ferrer MR, Ramos-Cormenzana A (1993) Precipitation of carbonate by Bacillus sp. isolated from saline soils. Geomicrobiol J 11:175–184

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Ramos-Cormenzana A, Delgado G, Delgado R (1996) Process of carbonate precipitation by Deleya halophila. Curr Microbiol 32:308–313

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and in liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  PubMed  Google Scholar 

  • Rivadeneyra MA, Delgado R, Párraga J, Ramos-Cormenzana A, Delgado R (2006) Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: influence of salt concentration. Folia Microbiol 51:445–453

    Article  CAS  Google Scholar 

  • Rodriguez Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, Gonza ´lezMun ˜oz MT (2012) Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications in stone conservation. Appl Environ Microbiol 78:4017–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA (2007) Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol Ecol 61:273–284

    Article  PubMed  Google Scholar 

  • Stabnikov V, Jian C, Ivanov V, Li Y (2013) Halotolerant, alkaliphilic urease-producing bacteria from different climate zones and their application for biocementation of sand. World J Microbiol Biotechnol 29:1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Stöver BC, Müller KF (2010) TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson J, Morrison G (1951) Determination of organic nitrogen control of variables in the use of Nessler’s reagent. Anal Chem 23:1153–1157

    Article  CAS  Google Scholar 

  • Vahed SZ, Forouhandeh H, Hassanzadeh S, Klenk HP, Hejazi MA, Hejazi MS (2011) Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiol 80:834–841

    Article  CAS  Google Scholar 

  • Wei S, Cui H, Jiang Z, Liu H, He H, Fang N (2015) Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Braz J Microbiol 46:455–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang JL, Wang MS, Cheng AC, Pan KC, Li CF, Deng SX (2008) A simple and rapid method for extracting bacterial DNA from intestinal microflora for ERIC-PCR detection. World J Gastroenterol 14:2872–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yena FS, Chang PL, Yu PC, Yang RJ (2007) Characterization on microstructure homogeneity of θ-Al2O3 powder systems during phase transformation. Key Eng Mater 351:81–87  

    Article  Google Scholar 

Download references

Acknowledgements

The current study was supported by the Grant from Shahid Chamran University of Ahvaz to Maryam Haddadi for obtaining M.Sc. degree. The authors would like to thank Sara Ghashghaei and Masoud Mohammadi Farsani for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Ghezelbash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelbash, G.R., Haddadi, M. Production of nanocalcite crystal by a urease producing halophilic strain of Staphylococcus saprophyticus and analysis of its properties by XRD and SEM. World J Microbiol Biotechnol 34, 174 (2018). https://doi.org/10.1007/s11274-018-2544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2544-2

Keywords