Abstract
This paper describes the extracellular synthesis of silver nanoparticles from waste part of lychee fruit (peel) and their conjugation with selected antibiotics (amoxicillin, cefixim, and streptomycin). FTIR studies revealed the reduction of metallic silver and stabilization of silver nanoparticles and their conjugates due to the presence of CO (carboxyl), OH (hydroxyl) and CH (alkanes) groups. The size of conjugated nanoparticles varied ranging from 3 to 10 nm as shown by XRD. TEM image revealed the spherical shape of biosynthesized silver nanoparticles. Conjugates of amoxicillin and cefixim showed highest antibacterial activity (147.43 and 107.95%, respectively) against Gram-negative bacteria i.e. Alcaligenes faecalis in comparison with their control counterparts. The highest reduction in MIC was noted against Gram-positive strains i.e. Enterococcus faecium (75%) and Microbacterium oxydans (75%) for amoxicillin conjugates. Anova two factor followed by two-tailed t test showed non-significant results both in case of cell leakage and protein estimation between nanoparticles and conjugates of amoxicillin, cefixime and streptomycin. In case of MDA release, non-significant difference among the test samples against the selected strains. Our study found green-synthesized silver nanoparticles as effective antibacterial bullet against both Gram positive and Gram negative bacteria, but they showed a more promising effect on conjugation with selected antibiotics against Gram negative type.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmad N, Sharma S (2012) Green synthesis of silver nanoparticles using extract of ananas comosus. Green Sustain Chem 2(4):1–7. https://doi.org/10.4236/gsc.2012.24020
Batarseh KI (2004) Anomaly and correlation of killing in the therapeutic properties of silver (I) chelation with glutamic and tartaric acids. J Antimicrob Chemother 54(2):546–548. https://doi.org/10.1093/jac/dkh349
Da Silva LCN, de Cassia Mendonccedil R, de Barros Gomes E, de Araujo JM, de Figueiredo RCBQ, da Silva MV, dos Santos Correia MT (2013) Evaluation of combinatory effects of Anadenanthera colubrina, Libidibia ferrea and Pityrocarpa moniliformis fruits extracts and erythromycin against Staphylococcus aureus.. J Med Plant Res 7(32):2358–2364. https://doi.org/10.5897/JMPR2013.2597
Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B 94:143–150. https://doi.org/10.1016/j.colsurfb.2012.01.046
Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopesticides 3(1):394–399
Gurunathan S (2014) Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.014
Harshiny M, Matheswaran M, Arthananreeswaran G, Kumaran S, Rajasree S (2015) Enhancement of antibacterial properties of silver nanoparticles–ceftriaxone conjugate through Mukia maderaspatana leaf extract mediated synthesis. Ecotoxicol Environ Saf 121:135–141. https://doi.org/10.1016/j.ecoenv.2015.04.041
Konop M, Damps T, Misicka A, Rudnicka L (2016) Certain aspects of silver and silver nanoparticles in wound care: a minireview. J Nanomater. https://doi.org/10.1155/2016/7614753
Krishna G, Kumar SS, Pranitha V, Alha M, Charaya S (2015) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Salmonella sp. Int J Pharm Pharm Sci 7(11):84–88
Miller KP (2015) Bacterial communication and its role as a target for nanoparticle-based antimicrobial therapy. Doctoral dissertation. http://scholarcommons.sc.edu/etd/3188
Mohammadi S, Pourseyedi S, Amini A (2016) Green synthesis of silver nanoparticles with a long lasting stability using colloidal solution of cowpea seeds (Vigna sp. L). J Environ Chem Eng 4(2):2023–2032. https://doi.org/10.1016/j.jece.2016.03.026
Mu H, Tang J, Liu Q, Sun C, Wang T, Duan J (2016) Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci Rep 6:18877. https://doi.org/10.1038/srep18877
Nisha HM, Tamileaswari R, Jesurani S (2015) Analysis of antibacterial activity of silver nanoparticle from pomegranate (Punica granatum) seed and peel extract. Int J Eng Res Technol 4(4):1044
Nowack B, Krug HF, Height M (2011) 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 44:1177–1183. https://doi.org/10.1021/es103316q
Pal S, Tak KY, Song MJ (2007) Does the antibacterial activity of silver 248 nanoparticles depend on the shape of the nanoparticle? A study of the 249 Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720
Pubchem (2016a) Amoxicillin from National Center for Biotechnology Information. PubChem Compound Database. https://pubchem.ncbi.nlm.nih.gov/compound/33613. Accessed 6 Mar 2016
Pubchem (2016b) CEFIXIME from National Center for Biotechnology Information. PubChem Compound Database. https://pubchem.ncbi.nlm.nih.gov/compound/54362. Accessed 6 Mar 2016
Queiroz EDR, Abreu CMPD, Oliveira KDS, Ramos VDO, Fráguas RM (2015) Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions1. Revista Ciência Agronômica 46(1):163–169. https://doi.org/10.1590/S1806-66902015000100019
Ramteke C, Chakrabarti T, Sarangi KB, Pandey AR (2013) Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem. https://doi.org/10.1155/2013/278925
Rao ML, Bhumi G, Savithramma N (2013) Green synthesis of silver nanoparticles by Allamanda cathartica L. leaf extract and evaluation for antimicrobial activity. Int J Pharm Sci Nanotechnol 6(4):2260–2268
Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S (2016) Size-and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6(4):74
Reddy DHK, Seshaiah K, Reddy AVR, Lee SM (2012) Optimization of Cd (II), Cu (II) and Ni (II) biosorption by chemically modified Moringa oleifera leaves powder. Carbohydr Polym 88(3):1077–1086
Reenal M, Iruthaya KSS (2015) Green synthesis and antibacterial activity of silver nanoparticles using Oryza sativa husk extract. Int Res J Environ Sci 4(5):68–72
Rigo C, Ferroni L, Tocco I, Roman M, Munivrana I, Gardin C et al (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14(3):4817–4840. https://doi.org/10.3390/ijms14034817
Shukla SK, Chaudhary P, Kumar IP, Samanta N, Afrin F, Gupta ML et al (2006) Protection from radiation-induced mitochondrial and genomic DNA damage by an extract of Hippophae rhamnoides. Environ Mol Mutagen 47(9):647–656. https://doi.org/10.1089/omi.2011.0096
Singh P, Kumar R, Raja BR, Kalaichelvan TP (2011) Mycobased biosynthesis of silver nanoparticles and studies of its synergistic antibacterial activity combined with cefazolin antibiotic against selected organisms. Aust J Basic Appl Sci 5(8):1412–1427
Ul Ain N, Safdar N, Yasmin A (2017) Antimicrobial Investigations from crude and peptide extracts of Glycine max Linn. Merr varieties. Arab J Sci Eng 42(1):105–113. https://doi.org/10.1007/s13369-016-2248-6
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Perveen, S., Safdar, N., Chaudhry, Ges. et al. Antibacterial evaluation of silver nanoparticles synthesized from lychee peel: individual versus antibiotic conjugated effects. World J Microbiol Biotechnol 34, 118 (2018). https://doi.org/10.1007/s11274-018-2500-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11274-018-2500-1


