Advertisement

Chitosan’s biological activity upon skin-related microorganisms and its potential textile applications

  • Eduardo M. Costa
  • Sara Silva
  • Mariana Veiga
  • Freni K. Tavaria
  • Maria M. Pintado
Review

Abstract

Over the years the body of work relating chitosan and its possible skin-related applications has grown, showing that chitosan is active both as a free compound and as a functional finishing of textiles. As a free molecule chitosan proved itself to be an attractive option as it is biocompatible and has a demonstrated biological activity (e.g. growth inhibition or adhesion inhibition) upon multiple skin pathogens, even upon multidrug resistant species. Furthermore, chitosan has wound healing accelerating properties, which make it a prime candidate for possible control of skin related infections. Almost inconspicuously, textiles have been one the main lines of defense of the skin against foreign threats, acting as a physical barrier to microbial colonization and infection. With the advent of textile functionalization specially designed textiles with enhanced protective characteristics, such as antimicrobial capacity, have come to the forefront. Chitosan functionalized textiles have been shown to be effective inhibitors of microbial growth with even invasive multidrug resistant species, as MRSA, being inhibited. Therefore, chitosan and chitosan functionalized textiles present themselves as both an interesting alternative to traditional antibiotics and as a possible means to enhance current treatment strategies.

Keywords

Antimicrobial textiles Chitosan Skin pathogen Textile functionalization 

Notes

Acknowledgements

This work was supported by QREN-ANI through project 17819. We would also like to thank the scientific collaboration of CBQF under the FCT project UID/Multi/50016/2013. Additionally, the author E.M. Costa would like to acknowledge FCT and Aquitex S.A. for his Ph.D. Grant SFRH/BDE/103957/2014.

References

  1. Abdel-Mohsen AM, Aly AS, Hrdina R, Montaser AS, Hebeish A (2012) Biomedical textiles through multifunctioalization of cotton fabrics using innovative methoxypolyethylene glycol-N-chitosan graft copolymer. J Polym Environ 20:104–116.  https://doi.org/10.1007/s10924-011-0356-7 CrossRefGoogle Scholar
  2. Abdou ES, Elkholy SS, Elsabee MZ, Mohamed E (2008) Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan. J Appl Polym Sci 108:2290–2296.  https://doi.org/10.1002/app.25937 CrossRefGoogle Scholar
  3. Achermann Y, Goldstein EJC, Coenye T, Shirtliff ME (2014) Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 27:419–440.  https://doi.org/10.1128/cmr.00092-13 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Adler BL, Krausz A, Friedman AJ (2014) Acinetobacter baumannii emerging as a multidrug-resistant skin and soft-tissue pathogen: parallels to methicillin-resistant staphylococcus aureus. JAMA Dermatol 150:905–906.  https://doi.org/10.1001/jamadermatol.2013.8855 CrossRefPubMedGoogle Scholar
  5. Aly AS, Hashem A, Hussein SS (2004) Utilization of chitosan citrate as crease-resistant and antimicrobial finishing agent for cotton fabric. Indian J Fibre Text 29:218–222Google Scholar
  6. Amin RM, Bhayana B, Hamblin MR, Dai T (2016) Antimicrobial blue light inactivation of pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: in vitro and in vivo studies. Lasers Surg Med 48:562–568.  https://doi.org/10.1002/lsm.22474 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Apisarnthanarak A, Pinitchai U, Warachan B, Warren DK, Khawcharoenporn T, Hayden MK (2014) Effectiveness of infection prevention measures featuring advanced source control and environmental cleaning to limit transmission of extremely-drug resistant Acinetobacter baumannii in a Thai intensive care unit: an analysis before and after extensive flooding. Am J Infect Control 42:116–121.  https://doi.org/10.1016/j.ajic.2013.09.025 CrossRefPubMedGoogle Scholar
  8. Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N (2012) Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll 29:48–56.  https://doi.org/10.1016/j.foodhyd.2012.02.013 CrossRefGoogle Scholar
  9. Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications European. J Pharm Biopharm 57:35–52.  https://doi.org/10.1016/S0939-6411(03)00160-7 CrossRefGoogle Scholar
  10. Boucher HW et al (2013) 10 × ‘20 progress—development of new drugs active against gram-negative bacilli: an update from the infectious diseases Society of America. Clin Infect Dis.  https://doi.org/10.1093/cid/cit152 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carlson RP, Taffs R, Davison WM, Stewart PS (2008) Anti-biofilm properties of chitosan-coated surfaces. J Biomater Sci 19:1035–1046.  https://doi.org/10.1163/156856208784909372 CrossRefGoogle Scholar
  12. Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4:59–64.  https://doi.org/10.1016/j.biomag.2013.10.007 CrossRefGoogle Scholar
  13. Chen L-C, Chiang W-D, Chen W-C, Chen H-H, Huang Y-W, Chen W-J, Lin S-B (2012a) Influence of alanine uptake on Staphylococcus aureus surface charge and its susceptibility to two cationic antibacterial agents, nisin and low molecular weight chitosan. Food Chem 135:2397–2403.  https://doi.org/10.1016/j.foodchem.2012.06.122 CrossRefPubMedGoogle Scholar
  14. Chen T, Wang R, Xu LQ, Neoh KG, Kang E-T (2012b) Carboxymethyl chitosan-functionalized magnetic nanoparticles for disruption of biofilms of Staphylococcus aureus and Escherichia coli. Ind Eng Chem Res 51:13164–13172.  https://doi.org/10.1021/ie301522w CrossRefGoogle Scholar
  15. Cheng X, Ma K, Li R, Ren X, Huang TS (2014) Antimicrobial coating of modified chitosan onto cotton fabrics. Appl Surf Sci 309:138–143.  https://doi.org/10.1016/j.apsusc.2014.04.206 CrossRefGoogle Scholar
  16. Chiller K, Selkin BA, Murakawa GJ (2001) Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc 6:170–174.  https://doi.org/10.1046/j.0022-202x.2001.00043.x CrossRefPubMedGoogle Scholar
  17. Cobrado L, Azevedo MM, Silva-Dias A, Ramos JP, Pina-Vaz C, Rodrigues AG (2012) Cerium, chitosan and hamamelitannin as novel biofilm inhibitors? J Antimicrob Chemother 67:1159–1162.  https://doi.org/10.1093/jac/dks007 CrossRefPubMedGoogle Scholar
  18. Cogen AL, Nizet V, Gallo RL (2008) Skin microbiota: a source of disease or defence? Br J Dermatol 158:442–455.  https://doi.org/10.1111/j.1365-2133.2008.08437.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Costa EM, Silva S, Tavaria FK, Pintado MM (2017a) Insights into chitosan antibiofilm activity against methicillin-resistant Staphylococcus aureus. J Appl Microbiol 122:1547–1557.  https://doi.org/10.1111/jam.13457 CrossRefPubMedGoogle Scholar
  20. Costa EM, Silva S, Veiga M, Vicente S, Tavaria FK, Pintado ME (2017b) Investigation of chitosan’s antibacterial activity against vancomycin resistant microorganisms and their biofilms. Carbohyd Polym 174:369–376.  https://doi.org/10.1016/j.carbpol.2017.06.087 CrossRefGoogle Scholar
  21. Costa EM et al (2017c) Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects materials. Sci Eng 79:221–226.  https://doi.org/10.1016/j.msec.2017.05.047 CrossRefGoogle Scholar
  22. Costa EM, Silva S, Vicente S, Veiga M, Tavaria F, Pintado MM (2017d) Chitosan as an effective inhibitor of multidrug resistant Acinetobacter baumannii. Carbohydr Polym 178:347–351.  https://doi.org/10.1016/j.carbpol.2017.09.055 CrossRefPubMedGoogle Scholar
  23. Dai T et al (2013) Blue light rescues mice from potentially fatal Pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action. Antimicrob Agents Chemother 57:1238–1245.  https://doi.org/10.1128/aac.01652-12 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014.  https://doi.org/10.1016/j.progpolymsci.2011.02.001 CrossRefGoogle Scholar
  25. Dhiman G, Chakraborty JN (2015) Antimicrobial performance of cotton finished with triclosan, silver and chitosan. Fash Text 2:13.  https://doi.org/10.1186/s40691-015-0040-y CrossRefGoogle Scholar
  26. Fernandes JC, Tavaria FK, Fonseca SC, Ramos ÓS, Pintado ME, Malcata FX (2010) In vitro screening for anti-microbial activity of chitosans and chitooligosaccharides, aiming at potential uses in functional textiles. J Microbiol Biotechnol 20:311–318CrossRefPubMedGoogle Scholar
  27. Ferrero F, Periolatto M (2012) Antimicrobial finish of textiles by chitosan UV-curing. J Nanosci Nanotechnol 12:4803–4810CrossRefPubMedGoogle Scholar
  28. Friedman AJ et al (2013) Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Investig Dermatol 133:1231–1239.  https://doi.org/10.1038/jid.2012.399 CrossRefPubMedGoogle Scholar
  29. Gao Y, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Textile Res J 78:60–72CrossRefGoogle Scholar
  30. Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253.  https://doi.org/10.1038/nrmicro2537 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grice E et al (2009) Topographical and temporal diversity of the human skin microbiome. Science.  https://doi.org/10.1126/science.1171700 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gunay M (2013) Eco-friendly textile dyeing and finishing. InTech, London.  https://doi.org/10.5772/3436 CrossRefGoogle Scholar
  33. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244CrossRefPubMedGoogle Scholar
  34. Hiraki Y et al (2013) Successful treatment of skin and soft tissue infection due to carbapenem-resistant Acinetobacter baumannii by ampicillin–sulbactam and meropenem combination therapy. Int J Infect Dis 17:e1234–e1236.  https://doi.org/10.1016/j.ijid.2013.05.002 CrossRefPubMedGoogle Scholar
  35. Hosseini M, Montazer M, Damercheli R (2013) Enhancing dye-ability and antibacterial features of silk through pre-treatment with chitosan. J Eng Fiber Fabr 8:102–111Google Scholar
  36. Ivanova NA, Philipchenko AB (2012) Superhydrophobic chitosan-based coatings for textile processing. Appl Surf Sci 263:783–787.  https://doi.org/10.1016/j.apsusc.2012.09.173 CrossRefGoogle Scholar
  37. Janjic S, Kostic M, Vucinic V, Dimitrijevic S, Popovic K, Ristic M, Skundric P (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240–246.  https://doi.org/10.1016/j.carbpol.2009.03.033 CrossRefGoogle Scholar
  38. Jocic D, Vílchez S, Topalovic T, Navarro A, Jovancic P, Julià MR, Erra P (2005) Chitosan/acid dye interactions in wool dyeing system. Carbohydr Polym 60:51–59.  https://doi.org/10.1016/j.carbpol.2004.11.021 CrossRefGoogle Scholar
  39. Kim YH, Choi H-M, Yoon JH (1998) Synthesis of a quaternary ammonium derivative of chitosan and its application to a cotton antimicrobial finish. Text Res J 68:428–434.  https://doi.org/10.1177/004051759806800607 CrossRefGoogle Scholar
  40. Kim J-H, Yu D, Eom S-H, Kim S-H, Oh J, Jung WK, Kim Y-M (2017) Synergistic antibacterial effects of chitosan-caffeic acid conjugate against antibiotic-resistant acne-related bacteria. Mar Drugs 15:167CrossRefPubMedCentralGoogle Scholar
  41. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63.  https://doi.org/10.1016/j.ijfoodmicro.2010.09.012 CrossRefPubMedGoogle Scholar
  42. Latibeaudiere R, Rosa R, Laowansiri P, Arheart K, Namias N, Munoz-Price LS (2015) Surveillance cultures growing carbapenem-resistant Acinetobacter baumannii predict the development of clinical infections: a retrospective cohort study. Clin Infect Dis 60:415–422.  https://doi.org/10.1093/cid/ciu847 CrossRefPubMedGoogle Scholar
  43. Lee D-S, Jeong S-Y, Kim Y-M, Lee M-S, Ahn C-B, Je J-Y (2009) Antibacterial activity of aminoderivatized chitosans against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Med Chem 17:7108–7112.  https://doi.org/10.1016/j.bmc.2009.09.007 CrossRefPubMedGoogle Scholar
  44. Lee D-S, Woo J-Y, Ahn C-B, Je J-Y (2014) Chitosan–hydroxycinnamic acid conjugates: preparation, antioxidant and antimicrobial activity. Food Chem 148:97–104.  https://doi.org/10.1016/j.foodchem.2013.10.019 CrossRefPubMedGoogle Scholar
  45. Leleu S, Herman L, Heyndrickx M, De Reu K, Michiels CW, De Baerdemaeker J, Messens W (2011) Effects on Salmonella shell contamination and trans-shell penetration of coating hens’ eggs with chitosan. Int J Food Microbiol 145:43–48.  https://doi.org/10.1016/j.ijfoodmicro.2010.11.023 CrossRefPubMedGoogle Scholar
  46. Lopes C et al (2015) Chitosan coated textiles may improve atopic dermatitis severity by modulating skin staphylococcal profile: a randomized controlled trial. PLoS ONE 10:e0142844.  https://doi.org/10.1371/journal.pone.0142844 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Luo S, Van Ooij WJ (2002) Surface modification of textile fibers for improvement of adhesion to polymeric matrices: a review. J Adhes Sci Technol 16:1715–1735.  https://doi.org/10.1163/156856102320396102 CrossRefGoogle Scholar
  48. Meyer JJ (1994) The validity of thoracolumbar paraspinal scanning EMG as a diagnostic test: an examination of the current literature. J Manip Physiol Ther 17:539–551Google Scholar
  49. Morsy R, Ali SS, El-Shetehy M (2017) Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. J Mol Struct 1143:251–258.  https://doi.org/10.1016/j.molstruc.2017.04.090 CrossRefGoogle Scholar
  50. Murillo N, Raoult D (2013) Skin microbiota: overview and role in the skin diseases acne vulgaris and rosacea. Futur Microbiol 8:209–222.  https://doi.org/10.2217/fmb.12.141 CrossRefGoogle Scholar
  51. Muzzarelli R, Tarsi R, Filippini O, Giovanetti E, Biagini G, Varaldo PE (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023.  https://doi.org/10.1128/aac.34.10.2019 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Peng Z-X, Wang L, Du L, Guo S-R, Wang X-Q, Tang T-T (2010) Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohyd Polym 81:275–283.  https://doi.org/10.1016/j.carbpol.2010.02.008 CrossRefGoogle Scholar
  53. Peng ZX, Tu B, Shen Y, Du L, Wang L, Guo SR, Tang TT (2011) Quaternized chitosan inhibits icaA transcription and biofilm formation by Staphylococcus on a titanium surface. Antimicrob Agents Chemother 55:860–866.  https://doi.org/10.1128/AAC.01005-10 CrossRefPubMedGoogle Scholar
  54. Pérez-Díaz M et al (2016) Anti-biofilm activity of chitosan gels formulated with silver nanoparticles and their cytotoxic effect on human fibroblasts. Mater Sci Eng 60:317–323.  https://doi.org/10.1016/j.msec.2015.11.036 CrossRefGoogle Scholar
  55. Periolatto M, Ferrero F, Vineis C (2012) Antimicrobial chitosan finish of cotton and silk fabrics by UV-curing with 2-hydroxy-2-methylphenylpropane-1-one. Carbohydr Polym 88:201–205.  https://doi.org/10.1016/j.carbpol.2011.11.093 CrossRefGoogle Scholar
  56. Periolatto M, Ferrero F, Vineis C, Rombaldoni F (2013) Multifunctional finishing of wool fabrics by chitosan UV-grafting: an approach. Carbohydr Polym 98:624–629.  https://doi.org/10.1016/j.carbpol.2013.06.054 CrossRefPubMedGoogle Scholar
  57. Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 6:1164–1172.  https://doi.org/10.1021/am404852d CrossRefPubMedGoogle Scholar
  58. Raafat D, von Bargen K, Haas A, Sahl H-G (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773.  https://doi.org/10.1128/aem.00453-08 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Raafat D, Leib N, Wilmes M, François P, Schrenzel J, Sahl H-G (2017) Development of in vitro resistance to chitosan is related to changes in cell envelope structure of Staphylococcus aureus. Carbohydr Polym 157:146–155.  https://doi.org/10.1016/j.carbpol.2016.09.075 CrossRefPubMedGoogle Scholar
  60. Rahman Bhuiyan MA, Hossain MA, Zakaria M, Islam MN, Zulhash Uddin M (2017) Chitosan coated cotton fiber: physical and antimicrobial properties for apparel use. J Polym Environ 25:334–342.  https://doi.org/10.1007/s10924-016-0815-2 CrossRefGoogle Scholar
  61. Ranjbar-Mohammadi M, Arami M, Bahrami H, Mazaheri F, Mahmoodi NM (2010) Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids Surf B 76:397–403.  https://doi.org/10.1016/j.colsurfb.2009.11.014 CrossRefGoogle Scholar
  62. Ristić T, Zemljič LF, Novak M, Kunčič MK, Sonjak S, Cimerman NG, Strnad S (2011) Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. Sci Against Microbial Pathog 6:36–51Google Scholar
  63. Sadeghi-Kiakhani M, Gharanjig K, Arami M (2015) Grafting of prepared chitosan–poly(propylene) imines dendrimer hybrid as a biopolymer onto cotton and its antimicrobial property. J Ind Eng Chem 28:78–85.  https://doi.org/10.1016/j.jiec.2015.02.002 CrossRefGoogle Scholar
  64. Sampaio S, Martins C, Gomes JR (2011) Colored nanoparticles for ecological dyeing of cellulosic fibres. Adv Mater Res 332–334:1136–1139.  https://doi.org/10.4028/www.scientific.net/AMR.332-334.1136 CrossRefGoogle Scholar
  65. Shahid ul I, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260.  https://doi.org/10.1021/ie303627x CrossRefGoogle Scholar
  66. Shahidi S, Wiener J, Ghoranneviss M (2013) Surface modification methods for improving the dyeability of textile fabrics. In: Gunay M (ed) Eco-friendly textile dyeing and finishing. InTech, London, pp 33–52.  https://doi.org/10.5772/53911 CrossRefGoogle Scholar
  67. Shin Y, Yoo DI, Min K (1999) Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. J Appl Polym Sci 74:2911–2916.  https://doi.org/10.1002/(SICI)1097-4628(19991213)74:12%3C2911::AID-APP16%3E3.0.CO;2-2 CrossRefGoogle Scholar
  68. Soroush S et al (2016) Investigation of biofilm formation ability, antimicrobial resistance and the staphylococcal cassette chromosome mec patterns of methicillin resistant Staphylococcus epidermidis with different sequence types isolated from children. Microb Pathog 93:126–130.  https://doi.org/10.1016/j.micpath.2016.01.018 CrossRefPubMedGoogle Scholar
  69. Takai K, Ohtsuka T, Senda Y, Nakao M, Yamamoto K, Matsuoka J, Hirai Y (2002) Antibacterial properties of antimicrobial-finished textile products. Microbiol Immunol 46:75–81CrossRefPubMedGoogle Scholar
  70. Tan H, Peng Z, Li Q, Xu X, Guo S, Tang T (2012) The use of quaternised chitosan-loaded PMMA to inhibit biofilm formation and downregulate the virulence-associated gene expression of antibiotic-resistant staphylococcus. Biomaterials 33:365–377.  https://doi.org/10.1016/j.biomaterials.2011.09.084 CrossRefPubMedGoogle Scholar
  71. Tao Y, Qian L-H, Xie J (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphyloccocus aureus. Carbohyd Polym 86:969–974.  https://doi.org/10.1016/j.carbpol.2011.05.054 CrossRefGoogle Scholar
  72. Tavaria FK, Soares JC, Reis IL, Paulo MH, Malcata FX, Pintado ME (2012) Chitosan: antimicrobial action upon staphylococci after impregnation onto cotton fabric. J Appl Microbiol 112:1034–1041.  https://doi.org/10.1111/j.1365-2672.2012.05274.x CrossRefPubMedGoogle Scholar
  73. Tavaria FK, Costa EM, Gens EJ, Malcata FX, Pintado ME (2013) Influence of abiotic factors on the antimicrobial activity of chitosan. J Dermatol 40:1014–1019.  https://doi.org/10.1111/1346-8138.12315 CrossRefPubMedGoogle Scholar
  74. Tayel AA, Moussa S, El-Tras WF, Knittel D, Opwis K, Schollmeyer E (2010) Anticandidal action of fungal chitosan against Candida albicans. Int J Biol Macromol 47:454–457.  https://doi.org/10.1016/j.ijbiomac.2010.06.011 CrossRefPubMedGoogle Scholar
  75. Tayel AA, Ghanem RA, Moussa SH, Fahmi M, Tarjam HM, Ismail N (2018) Skin protectant textiles loaded with fish collagen, chitosan and oak galls extract composite. Int J Biol Macromol.  https://doi.org/10.1016/j.ijbiomac.2018.05.150 PubMedCrossRefGoogle Scholar
  76. Thandar M, Lood R, Winer BY, Deutsch DR, Euler CW, Fischetti VA (2016) Novel engineered peptides of a phage lysin as effective antimicrobials against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 60:2671–2679.  https://doi.org/10.1128/aac.02972-15 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Tsai G-J, Zhang S-L, Shieh P-L (2004) Antimicrobial activity of a low-molecular-weight chitosan obtained from cellulase digestion of chitosan. J Food Prot 67:396–398.  https://doi.org/10.4315/0362-028x-67.2.396 CrossRefPubMedGoogle Scholar
  78. Tseng H-J, Hsu S-h, Wu M-W, Hsueh T-H, Tu P-C (2009) Nylon textiles grafted with chitosan by open air plasma and their antimicrobial effect. Fibers Polym 10:53–59.  https://doi.org/10.1007/s12221-009-0053-5 CrossRefGoogle Scholar
  79. Xue Z (2015) Microwave-assisted antimicrobial finishing of wool fabric with chitosan derivative. Indian J Fibre Text 40:51–56Google Scholar
  80. Yuen C, Ku S, Kan C, Choi P (2007) Enhancing textile ink-jet printing with chitosan. Color Technol 123:267–270CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de BiotecnologiaPortoPortugal

Personalised recommendations