Skip to main content

Advertisement

Log in

The Rab GTPase activating protein Gyp2 contributes to UV stress tolerance in Metarhizium acridum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

GTPase activation protein (GAP) for Rab GTPases can accelerate GTP hydrolysis to alter the activity of Rab GTPases. To explore the function of GAP in entomopathogenic fungi, we constructed a deletion mutant of Gyp2 gene, a member of the Gyp (GAP for Ypt/Rab proteins) family in the locust-specific fungal pathogen, Metarhizium acridum. Results showed that the ∆MaGyp2 mutant had dramatically decreased tolerance to ultraviolet irradiation compared to wild type strain. Quantitative real-time PCR revealed that UV irradiation repair related genes Uve1 and WC1 were downregulated in ∆MaGyp2 mutant. Seven of other ten Gyp family members had significantly increased transcription in ∆MaGyp2 mutant compared with wild type, which may partly rescue the deficiency of MaGyp2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albert S, Gallwitz D (2000) Msb4p, a protein involved in Cdc42p-dependent organization of the actin cytoskeleton, is a Ypt/Rab-specific GAP. Biol Chem 381:453–456

    Article  CAS  PubMed  Google Scholar 

  • Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MCH, Hood L, DiRuggiero J (2004) Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. Genome Res 14:1025–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brosche M, Fant C, Bergkvist SW, Strid H, Svensk A, Olsson O, Strid A (1999) Molecular markers for UV-B stress in plants: alteration of the expression of four classes of genes in Pisum sativum and the formation of high molecular mass RNA adducts. Biochim Biophys Acta 1447:185–198

    Article  CAS  PubMed  Google Scholar 

  • Bucci C, Chiariello M (2006) Signal transduction gRABs attention. Cell Signal 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Du M, Luo S, Xia Y (2014) Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network. Appl Microbiol Biotechnol 98:8253–8265

    Article  CAS  PubMed  Google Scholar 

  • Carruthers RI, Feng Z, Ramos ME, Soper RS (1988) The effect of the solar radiation on the survival of Entomophaga grylli (Entomophthorales: Entomophthoraceae) conidia. J Invertebr Pathol 52:154–162

    Article  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  • Chesneau L, Dupre S, Burdina A, Roger J, Le Panse S, Jacquet M, Cuif MH (2004) Gyp5p and Gyl1p are involved in the control of polarized exocytosis in budding yeast. J Cell Sci 117:4757–4767

    Article  CAS  PubMed  Google Scholar 

  • Daoust RA, Pereira RM (1986) Stability of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae on beetle-attracting tubers and cowpea foliage in Brazile. Environ Entomol 15:1237–1243

    Article  Google Scholar 

  • Di Chiara M, Glaudemans B, Loffing-Cueni D, Odermatt A, Al-Hasani H, Devuyst O, Faresse N, Loffing J (2015) Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney. Am J Physiol Ren Physiol 309:F779–F790

    Article  CAS  Google Scholar 

  • Fang W, St Leger RJ (2012) Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. PLoS ONE 7:e43069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y (2004) Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol 85:18–24

    Article  CAS  PubMed  Google Scholar 

  • Frasa MA, Koessmeier KT, Ahmadian MR, Braga VM (2012) Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13:67–73

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M (2011) TBC proteins: GAPs for mammalian small GTPase Rab? Biosci Rep 31:159–168

    Article  CAS  PubMed  Google Scholar 

  • Gideon P, John J, Frech M, Lautwein A, Clark R, Scheffler JE, Wittinghofer A (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12:2050–2056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo P, Wang X (2010) Rab GTPases act in sequential steps to regulate phagolysosome formation. Small GTPases 1:170–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo P, Hu T, Zhang J, Jiang S, Wang X (2010) Sequential action of Caenorhabditis elegans Rab GTPases regulates phagolysosome formation during apoptotic cell degradation. Proc Natl Acad Sci USA 107:18016–18021

    Article  PubMed Central  PubMed  Google Scholar 

  • Hargett SR, Walker NN, Hussain SS, Hoehn KL, Keller SR (2015) Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice. Am J Physiol Endocrinol Metab 309:E233–E245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter DM, Milner RJ, Spurgin PA (2001) Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: Acrididae) with Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Bull Entomol Res 91:93–99

    CAS  PubMed  Google Scholar 

  • Ignoffo CM, Hostetter DL, Sikorowski PP, Sutter G, Brooks WM (1977) Inactivation of representative species of entomopathogenic viruses, a bacterium, fungus and protozoan by an ultraviolet light source. Environ Entomol 6:411–415

    Article  Google Scholar 

  • Kanno S, Iwai S, Takao M, Yasui A (1999) Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage. Nucleic Acids Res 27:3096–3103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo K, Nakajima K, Nabeshima Y, Hoshino M (2010) Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67:588–602

    Article  CAS  PubMed  Google Scholar 

  • Lachmann J, Barr FA, Ungermann C (2012) The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles. Mol Biol Cell 23:2516–2526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Cao Y, Xia Y (2010) Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 105:132–138

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Luo S, He M, Cao Y, Xia Y (2013) The tetraspanin gene MaPls1 contributes to virulence by affecting germination, appressorial function and enzymes for cuticle degradation in the entomopathogenic fungus, Metarhizium acridum. Environ Microbiol 15:2966–2979

    CAS  PubMed  Google Scholar 

  • Moore D, Bridge PD, Higgins PM, Bateman RP, Prior C (1993) Ultraviolet radiation damage to Metarhizium flavovoride conidia and the protection given by vegetable and mineral oil and chemical sunscreens. Ann Appl Biol 122:605–616

    Article  CAS  Google Scholar 

  • Pan X, Eathiraj S, Munson M, Lambright DG (2006) TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442:303–306

    Article  CAS  PubMed  Google Scholar 

  • Peng G, Wang Z, Yin Y, Zeng D, Xia Y (2008) Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Prot 27:1244–1250

    Article  Google Scholar 

  • Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120:3905–3910

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Duan Z, Huang W, Gao Q, Wang C (2012) Improving UV resistance and virulence of Beauveria bassiana by genetic engineering with an exogenous tyrosinase gene. J Invertebr Pathol 109:105–109

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Idnurm A (2013) The Uve1 endonuclease is regulated by the white collar complex to protect Cryptococcus neoformans from UV damage. PLoS Genet 9:e1003769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2:107–117

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Walsh B, Mitchell CA, Rowe T (2005) TBC domain family, member 15 is a novel mammalian Rab GTPase-activating protein with substrate preference for Rab7. Biochem Biophys Res Commun 335:154–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Nos. 31371992, 31772222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueqing Cao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 KB)

Supplementary material 2 (DOC 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, M., Xia, Y. & Cao, Y. The Rab GTPase activating protein Gyp2 contributes to UV stress tolerance in Metarhizium acridum. World J Microbiol Biotechnol 34, 78 (2018). https://doi.org/10.1007/s11274-018-2457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2457-0

Keywords

Navigation