Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality

  • Nadin Shagaghi
  • Enzo A. Palombo
  • Andrew H. A. Clayton
  • Mrinal Bhave


Antimicrobial peptides (AMPs) have been established over millennia as powerful components of the innate immune system of many organisms. Due to their broad spectrum of activity and the development of host resistance against them being unlikely, AMPs are strong candidates for controlling drug-resistant pathogenic microbial pathogens. AMPs cause cell death through several independent or cooperative mechanisms involving membrane lysis, non-lytic activity, and/or intracellular mechanisms. Biochemical determinants such as peptide length, primary sequence, charge, secondary structure, hydrophobicity, amphipathicity and host cell membrane composition together influence the biological activities of peptides. A number of biophysical techniques have been used in recent years to study the mechanisms of action of AMPs. This work appraises the molecular parameters that determine the biocidal activity of AMPs and overviews their mechanisms of actions and the diverse biochemical, biophysical and microscopy techniques utilised to elucidate these.


Antimicrobial peptides (AMPs) Mechanisms of action Peptide design Persistent infections 


  1. Alfred RL, Palombo EA, Panozzo JF, Bhave M (2013) The antimicrobial domains of wheat puroindolines are cell-penetrating peptides with possible intracellular mechanisms of action. PLoS ONE 8:e75488PubMedPubMedCentralCrossRefGoogle Scholar
  2. Avitabile C, D’Andrea LD, Romanelli A (2014) Circular dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep 4:04293CrossRefGoogle Scholar
  3. Baek MH, Kamiya M, Kushibiki T, Nakazumi T, Tomisawa S, Abe C, Kumaki Y, Kikukawa T, Demura M, Kawano K, Aizawa T (2016) Lipopolysaccharide-bound structure of the antimicrobial peptide cecropin P1 determined by nuclear magnetic resonance spectroscopy. J Pept Sci 22:214–221PubMedCrossRefGoogle Scholar
  4. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73:472–479PubMedCrossRefGoogle Scholar
  6. Boman HG, Agerberth B, Boman A (1993) Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 61:2978–2984PubMedPubMedCentralGoogle Scholar
  7. Brogden K (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250PubMedCrossRefGoogle Scholar
  8. Bulet P, Hetru C, Dimarcq JL, Hoffmann D (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23:329–344PubMedCrossRefGoogle Scholar
  9. Cahill K (2010) Molecular electroporation and the transduction of oligoarginines. Phys Biol 7:16001CrossRefGoogle Scholar
  10. Chan DI, Prenner EJ, Vogel HJ (2006) Trytophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202PubMedCrossRefGoogle Scholar
  11. Cruz J, Ortiz C, Guzmán F, Fernández-Lafuente R, Torres R (2014) Antimicrobial peptides: promising compounds against pathogenic microorganisms. Curr Med Chem 21:2299–2321PubMedCrossRefGoogle Scholar
  12. Den Hertog AL, Van Marle J, Van Veen HA, Van’t Hof W, Bolscher JGM, Veerman ECI, Nieuw Amerongen AV (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dong W, Dong Z, Mao X, Sun Y, Li F, Shang D (2016) Structure-activity analysis and biological studies of chensinin-1b analogues. Acta Biomater 37:59–68PubMedCrossRefGoogle Scholar
  14. Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, Sahl HG, Wider G, Schneider T, Aebi M (2014) Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J Biol Chem 289:34953–34964PubMedPubMedCentralCrossRefGoogle Scholar
  15. Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH (2007) Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 370:459–470PubMedPubMedCentralCrossRefGoogle Scholar
  16. Freire JM, Gaspar D, De La Torre BG, Veiga AS, Andreu D, Castanho MARB. (2014) Monitoring antibacterial permeabilization in real time using time-resolved flow cytometry. Biochim Biophys Acta Biomembr 1848:554–560CrossRefGoogle Scholar
  17. Friedrich CL, Rozek A, Patrzykat A, Hancock REW (2001) Structure and mechanism of action of an indolicidin peptide derivative with improved activity against Gram-positive bacteria. ‎J Biol Chem 276:24015–24022PubMedCrossRefGoogle Scholar
  18. Gee ML, Burton M, Grevis-James A, Hossain MA, McArthur S, Palombo EA, Wade JD, Clayton AHA (2013) Imaging the action of antimicrobial peptides on living bacterial cells. Sci Rep 3:01557CrossRefGoogle Scholar
  19. Gennaro R, Zanetti M (2000) Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Pept Sci 55:31–49CrossRefGoogle Scholar
  20. Gesell J, Zasloff M, Opella SJ (1997) Two-dimensional1H NMR experiments show that the 23-residue magainin antibiotic peptide is an α-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 9:127–135PubMedCrossRefGoogle Scholar
  21. Ghosh A, Kar RK, Jana J, Saha A, Jana B, Krishnamoorthy J, Kumar D, Ghosh S, Chatterjee S, Bhunia A (2014) Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem 9:2052–2058PubMedCrossRefGoogle Scholar
  22. Giangaspero A, Sandri L, Tossi A (2001) Amphipathic α helical antimicrobial peptides: a systematic study of the effects of structural and physical properties on biological activity. Eur J Biochem 268:5589–5600PubMedCrossRefGoogle Scholar
  23. Gopal R, Na H, Seo CH, Park Y (2012) Antifungal activity of (KW)n or (RW)n peptide against Fusarium solani and Fusarium oxysporum. Int J Mol Sci 13:15042–15053PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gunderson CW, Segall AM (2006) DNA repair, a novel antibacterial target: holliday junction-trapping peptides induce DNA damage and chromosome segregation defects. Mol Microbiol 59:1129–1148PubMedCrossRefGoogle Scholar
  25. Guzmán F, Marshall S, Ojeda C, Albericio F, Carvajal-Rondanelli P (2013) Inhibitory effect of short cationic homopeptides against Gram-positive bacteria. J Pept Sci 19:792–800PubMedCrossRefGoogle Scholar
  26. Hale JDF, Hancock REW (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5:951–959PubMedCrossRefGoogle Scholar
  27. Hall K, Lee TH, Mechler AI, Swann MJ, Aguilar MI (2014) Real-time measurement of membrane conformational states induced by antimicrobial peptides: balance between recovery and lysis. Sci Rep 4:05479CrossRefGoogle Scholar
  28. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323PubMedPubMedCentralGoogle Scholar
  29. Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557PubMedCrossRefGoogle Scholar
  30. Haney EF, Nathoo S, Vogel HJ, Prenner EJ (2010) Induction of non-lamellar lipid phases by antimicrobial peptides: a potential link to mode of action. Chem Phys Lipids 163:82–93PubMedCrossRefGoogle Scholar
  31. Haney EF, Petersen AP, Lau CK, Jing W, Storey DG, Vogel HJ (2013) Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochim Biophys Acta Biomembr 1828:1802–1813CrossRefGoogle Scholar
  32. Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10:585–606PubMedCrossRefGoogle Scholar
  33. Harris F, Dennison SR, Phoenix DA (2011) Anionic antimicrobial peptides from eukaryotic organisms and their mechanisms of action. Curr Chem Biol 5:142–153CrossRefGoogle Scholar
  34. Hollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, Semorile L, Maffía PC (2016) Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides. Colloids Surf B 141:528–536CrossRefGoogle Scholar
  35. Hsu CH, Chen C, Jou ML, Yueh-Luen Lee A, Lin YC, Yu YP, Huang WT, Wu SH (2005) Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33:4053–4064PubMedPubMedCentralCrossRefGoogle Scholar
  36. Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39:8347–8352PubMedCrossRefGoogle Scholar
  37. Huang Y, He L, Li G, Zhai N, Jiang H, Chen Y (2014) Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 5:631–642PubMedPubMedCentralCrossRefGoogle Scholar
  38. Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37:4288–4298PubMedCrossRefGoogle Scholar
  39. Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511PubMedPubMedCentralCrossRefGoogle Scholar
  40. Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B (1998) Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 273:3718–3724PubMedCrossRefGoogle Scholar
  41. Joshi S, Dewangan RP, Yar MS, Rawat DS, Pasha S (2015) N-terminal aromatic tag induced self assembly of tryptophan-arginine rich ultra short sequences and their potent antibacterial activity. RSC Adv 5:68610–68620CrossRefGoogle Scholar
  42. Kiba A, Saitoh H, Nishihara M, Omiya K, Yamamura S (2003) C-terminal domain of a hevein-like protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol 44:296–303PubMedCrossRefGoogle Scholar
  43. Kim YS, Cha HJ (2006) High-throughput and facile assay of antimicrobial peptides using pH-controlled fluorescence resonance energy transfer. Antimicrob Agents Chemother 50:3330–3335PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kocourková L, Novotná P, Čujová S, Čeřovský V, Urbanová M, Setnička V (2017) Conformational study of melectin and antapin antimicrobial peptides in model membrane environments. Spectrochim Acta A 170:247–255CrossRefGoogle Scholar
  45. Kolosova OA, Usachev KS, Aganov AV, Klochkov VV (2016) Antimicrobial peptide protegrins interact with DPC micelles by apolar hydrophobic cluster: structural studies by high-resolution NMR spectroscopy. Bionanoscience 6:317–319CrossRefGoogle Scholar
  46. Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L Jr (2001) The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026PubMedCrossRefGoogle Scholar
  47. Kristensen K, Henriksen JR, Andresen TL (2014) Quantification of leakage from large unilamellar lipid vesicles by fluorescence correlation spectroscopy. Biochim Biophys Acta Biomembr 1838:2994–3002CrossRefGoogle Scholar
  48. Laadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I (2016) Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2H solid-state NMR. Biochim Biophys Acta Biomembr 1858:2959–2964CrossRefGoogle Scholar
  49. Leitgeb B, Szekeres A, Manczinger L, Vágvölgyi C, Kredics L (2007) The history of Alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 4:1027–1051PubMedCrossRefGoogle Scholar
  50. Leptihn S, Har JY, Chen J, Ho B, Wohland T, Ding JL (2009) Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria. BMC Biol 7:22PubMedPubMedCentralCrossRefGoogle Scholar
  51. Li L, Shi Y, Cheng X, Xia S, Cheserek MJ, Le G (2015) A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA. Food Chem 166:231–239PubMedCrossRefGoogle Scholar
  52. Li L, Sun J, Xia S, Tian X, Cheserek MJ, Le G (2016) Mechanism of antifungal activity of antimicrobial peptide APP, a cell-penetrating peptide derivative, against Candida albicans: intracellular DNA binding and cell cycle arrest. Appl Microbiol Biotechnol 100:3245–3253PubMedCrossRefGoogle Scholar
  53. Lin J, Motylinski J, Krauson AJ, Wimley WC, Searson PC, Hristova K (2012) Interactions of membrane active peptides with planar supported bilayers: an impedance spectroscopy study. Langmuir 28:6088–6096PubMedCrossRefGoogle Scholar
  54. Liu Z, Brady A, Young A, Rasimick B, Chen K, Zhou C, Kallenbach NR (2007) Length effects in antimicrobial peptides of the (RW)n series. Antimicrob Agents Chemother 51:597–603PubMedCrossRefGoogle Scholar
  55. Liu YF, Han FF, Xie YG, Wang YZ (2011) Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Biometals 24:1069–1078PubMedCrossRefGoogle Scholar
  56. Manzini MC, Perez KR, Riske KA, Bozelli JC Jr, Santos TL, Da Silva MA, Saraiva GKV, Politi MJ, Valente AP, Almeida FCL, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM (2014) Peptide:Lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. Biochim Biophys Acta Biomembr 1838:1985–1999CrossRefGoogle Scholar
  57. Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M (2014) The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol 21:1639–1647PubMedCrossRefGoogle Scholar
  58. Matsuzaki K, Murase O, Fujii N, Miyajima K (1996) An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35:11361–11368PubMedCrossRefGoogle Scholar
  59. McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Separovic F, Martin LL (2011) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J 40:437–446PubMedCrossRefGoogle Scholar
  60. Mihajlovic M, Lazaridis T (2012) Charge distribution and imperfect amphipathicity affect pore formation by antimicrobial peptides. Biochim Biophys Acta Biomembr 1818:1274–1283CrossRefGoogle Scholar
  61. Mularski A, Wilksch JJ, Hanssen E, Strugnell RA, Separovic F (2016) Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochim Biophys Acta Biomembr 1858:1091–1098CrossRefGoogle Scholar
  62. Muñoz A, Marcos JF, Read ND (2012) Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol Microbiol 85:89–106PubMedCrossRefGoogle Scholar
  63. Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Yaver D, Elvig-Jørgensen SG, Sørensen MV, Christensen BE, Kjaerulff S, Frimodt-Moller N, Lehrer RI, Zasloff MF, Kristensen HH (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437:975–980PubMedCrossRefGoogle Scholar
  64. Neville F, Gidalevitz D, Kale G, Nelson A (2007) Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids. Bioelectrochemistry 70:205–213PubMedCrossRefGoogle Scholar
  65. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472PubMedCrossRefGoogle Scholar
  66. Nijnik A, Hancock REW (2009) The roles of cathelicidin LL-37 in immune defences and novel clinical applications. Curr Opin Hematol 16:41–47PubMedCrossRefGoogle Scholar
  67. Ordonez SR, Amarullah IH, Wubbolts RW, Veldhuizen EJA, Haagsman HP (2014) Fungicidal mechanisms of cathelicidins LL-37 and CATH-2 revealed by live-cell imaging. Antimicrob Agents Chemother 58:2240–2248PubMedPubMedCentralCrossRefGoogle Scholar
  68. Orioni B, Bocchinfuso G, Kim JY, Palleschi A, Grande G, Bobone S, Park Y, Kim JI, Hahm KS, Stella L (2009) Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. Biochim Biophys Acta Biomembr 1788:1523–1533CrossRefGoogle Scholar
  69. Otvos L Jr, Insug O, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M (2000) Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 39:14150–14159PubMedCrossRefGoogle Scholar
  70. Otvos L Jr (2002) The short proline-rich antibacterial peptide family. Cell Mol Life Sci 59:1138–1150PubMedCrossRefGoogle Scholar
  71. Pace CN, Scholtz JM (1998) A helix propensity scale based on experimental studies of peptides and proteins. Biophys J 75:422–427PubMedPubMedCentralCrossRefGoogle Scholar
  72. Papo N, Shai Y (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42:458–466PubMedCrossRefGoogle Scholar
  73. Papo N, Oren Z, Pag U, Sahl HG, Shai Y (2002) The consequence of sequence alteration of an amphipathic α-helical antimicrobial peptide and its diastereomers. J Biol Chem 277:33913–33921PubMedCrossRefGoogle Scholar
  74. Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A (2008) Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry 47:9057–9070PubMedCrossRefGoogle Scholar
  75. Pasupuleti M, Schmidtchen A, Chalupka A, Ringstad L, Malmsten M (2009) End-tagging of ultra-short antimicrobial peptides by W/F stretches to facilitate bacterial killing. PLoS ONE 4:e5285PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: Key components of the innate immune system. Crit Rev Biotechnol 32:143–171PubMedCrossRefGoogle Scholar
  77. Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock REW (2002) Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46:605–614PubMedPubMedCentralCrossRefGoogle Scholar
  78. Perrin BS, Tian Y, Fu R, Grant CV, Chekmenev EY, Wieczorek WE, Dao AE, Hayden RM, Burzynski CM, Venable RM, Sharma M, Opella SJ, Pastor RW, Cotten ML (2014) High-resolution structures and orientations of antimicrobial peptides piscidin 1 and piscidin 3 in fluid bilayers reveal tilting, kinking, and bilayer immersion. J Am Chem Soc 136:3491–3504PubMedPubMedCentralCrossRefGoogle Scholar
  79. Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536PubMedCrossRefGoogle Scholar
  80. Phoenix DA, Dennison SR, Harris F (2013) Antimicrobial peptides. Wiley, WeinheimCrossRefGoogle Scholar
  81. Prabhu S, Dennison SR, Lea B, Snape TJ, Nicholl ID, Radecka I, Harris F (2013) Anionic antimicrobial and anticancer peptides from plants. CRC Crit Rev Plant Sci 32:303–320CrossRefGoogle Scholar
  82. Praporski S, Mechler A, Separovic F, Martin LL (2015) Subtle differences in initial membrane interactions underpin the selectivity of small antimicrobial peptides. ChemPlusChem 80:91–96CrossRefGoogle Scholar
  83. Pushpanathan M, Gunasekaran P, Rajendhran J (2013) Antimicrobial peptides: Versatile biological properties. Int J Pept 2013:675391PubMedPubMedCentralCrossRefGoogle Scholar
  84. Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29:27–43PubMedCrossRefGoogle Scholar
  85. Rahman MS, Choi YH, Choi YS, Yoo JC (2017) Glycin-rich antimicrobial peptide YD1 from B. amyloliquefaciens, induced morphological alteration in and showed affinity for plasmid DNA of E. coli. AMB Express 7:e8CrossRefGoogle Scholar
  86. Ratledge C, Wilkinson SG (1988) Microbial lipids, vol 2. Academic Press, LondonGoogle Scholar
  87. Rozek A, Friedrich CL, Hancock REW (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39:15765–15774PubMedCrossRefGoogle Scholar
  88. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158PubMedCrossRefGoogle Scholar
  89. Sanders MR, Clifton LA, Frazier RA, Green RJ (2016) Role of lipid composition on the interaction between a Tryptophan-rich protein and model bacterial membranes. Langmuir 32:2050–2057PubMedCrossRefGoogle Scholar
  90. Sanders MR, Clifton LA, Frazier RA, Green RJ (2017) Tryptophan to arginine substitution in Puroindoline-b alters binding to model eukaryotic membrane. Langmuir 33:4847–4853PubMedCrossRefGoogle Scholar
  91. Sani MA, Whitwell TC, Gehman JD, Robins-Browne RM, Pantarat N, Attard TJ, Reynolds EC, O’Brien-Simpson NM, Separovic F (2013) Maculatin 1.1 disrupts Staphylococcus aureus lipid membranes via a pore mechanism. Antimicrob Agents Chemother 57:3593–3600PubMedPubMedCentralCrossRefGoogle Scholar
  92. Schauber J, Gallo RL (2008) Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol 122:261–266PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schibli DJ, Hwang PM, Vogel HJ (1999) Structure of the antimicrobial peptide tritrpticin bound to micelles: a distinct membrane-bound peptide fold. Biochemistry 38:16749–16755PubMedCrossRefGoogle Scholar
  94. Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray JrPB, Tack BF, Vogel HJ (2002) The solution structures of the human β-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem 277:8279–8289PubMedCrossRefGoogle Scholar
  95. Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Neve S, Ravn B, Bonvin AMJJ., De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science 328:1168–1172PubMedCrossRefGoogle Scholar
  96. Schneider VAF, Coorens M, Ordonez SR, Tjeerdsma-Van Bokhoven JLM, Posthuma G, Van Dijk A, Haagsman HP, Veldhuizen EJA (2016) Imaging the antimicrobial mechanism(s) of cathelicidin-2. Sci Rep 6:32948PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shagaghi N, Palombo EA, Clayton AHA, Bhave M (2016) Archetypal tryptophan-rich antimicrobial peptides: properties and applications. World J Microbiol Biotechnol 32:1–10CrossRefGoogle Scholar
  98. Shagaghi N, Bhave M, Palombo EA, Clayton AHA (2017) Revealing the sequence of interactions of PuroA peptide with Candida albicans cells by live-cell imaging. Sci Rep 7:43542PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shai Y, Oren Z (1996) Diastereomers of cytolysins, a novel class of potent antibacterial peptides. J Biol Chem 271:7305–7308PubMedCrossRefGoogle Scholar
  100. Shang D, Zhang Q, Dong W, Liang H, Bi X (2016) The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Acta Biomater 33:153–165PubMedCrossRefGoogle Scholar
  101. Sherman PJ, Jackway RJ, Gehman JD, Praporski S, McCubbin GA, Mechler A, Martin LL, Separovic F, Bowie JH (2009) Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study. Biochemistry 48:11892–11901PubMedCrossRefGoogle Scholar
  102. Sochacki KA, Barns KJ, Bucki R, Weisshaar JC (2011) Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37. Proc Natl Acad Sci USA 108:E77–E81PubMedPubMedCentralCrossRefGoogle Scholar
  103. Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH (2004) Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135:2055–2067PubMedPubMedCentralCrossRefGoogle Scholar
  104. Strandberg E, Zerweck J, Horn D, Pritz G, Berditsch M, Bürck J, Wadhwani P, Ulrich AS (2015) Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J Pept Sci 21:436–445PubMedCrossRefGoogle Scholar
  105. Strub JM, Goumon Y, Lugardon K, Capon C, Lopez M, Moniatte M, Van Dorsselaer A, Aunis D, Metz-Boutigue MH (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540PubMedCrossRefGoogle Scholar
  106. Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolocidin. FEMS Microbiol Lett 160:91–96PubMedCrossRefGoogle Scholar
  107. Subbalakshmi C, Nagaraj R, Sitaram N (1999) Biological activities of C-terminal 15-residue synthetic fragment of melittin: design of an analog with improved antibacterial activity. FEBS Lett 448:62–66PubMedCrossRefGoogle Scholar
  108. Szyk A, Wu Z, Tucker K, Yang D, Lu W, Lubkowski J (2006) Crystal structures of human α-defensins HNP4, HD5, and HD6. Protein Sci 5:2749–2760CrossRefGoogle Scholar
  109. Taniguchi M, Ochiai A, Fukuda S, Sato T, Saitoh E, Kato T, Tanaka T (2016) AmyI-1–18, a cationic α-helical antimicrobial octadecapeptide derived from α-amylase in rice, inhibits the translation and folding processes in a protein synthesis system. J Biosci Bioeng 122:385–392PubMedCrossRefGoogle Scholar
  110. Teixeira V, Feio MJ, Bastos M (2012) Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 51:149–177PubMedCrossRefGoogle Scholar
  111. Tomasinsig L, Scocchi M, Mettulio R, Zanetti M (2004) Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob Agents Chemother 48:3260–3267PubMedPubMedCentralCrossRefGoogle Scholar
  112. Torcato IM, Huang YH, Franquelim HG, Gaspar D, Craik DJ, Castanho MARB., Troeira Henriques S (2013) Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta Biomembr 1828:944–955CrossRefGoogle Scholar
  113. Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α-helical antimicrobial peptides. Biopolymers 55:4–30PubMedCrossRefGoogle Scholar
  114. Tu YH, Ho YH, Chuang YC, Chen PC, Chen CS (2011) Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip. PLoS ONE 6:e28197PubMedPubMedCentralCrossRefGoogle Scholar
  115. Ulvatne H, Samuelsen Ø, Haukland HH, Krämer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384PubMedGoogle Scholar
  116. Végh AG, Nagy K, Bálint Z, Kerényi A, Rákhely G, Váró G, Szegletes Z (2011) Effect of antimicrobial peptide-amide: indolicidin on biological membranes. J Biomed Biotechnol 2011:670589PubMedPubMedCentralCrossRefGoogle Scholar
  117. Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LLM (1973) The asymmetric distribution of phospholipids in the human red cell membrane: a combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta Biomembr 323:178–193CrossRefGoogle Scholar
  118. Wang G (2008) Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 283:32637–32643PubMedCrossRefGoogle Scholar
  119. Wang G, Li X, Zasloff M (2010) A database view of naturally occurring antimicrobial peptides: nomenclature, classification and amino acid sequence analysis. In: Wang G Antimicrobial peptides: discovery, design and novel therapeutic strategies. Cabi, Wallingford, pp 1–21CrossRefGoogle Scholar
  120. Westerhoff HV, Juretic D, Hendler RW, Zasloff M (1989) Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 86:6597–6601PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wieprecht T, Apostolov O, Beyermann M, Seelig J (1999) Thermodynamics of the α-helix-coil transition of amphipathic peptides in a membrane environment: Implications for the peptide-membrane binding equilibrium. J Mol Biol 294:785–794PubMedCrossRefGoogle Scholar
  122. Xiong M, Lee MW, Mansbach RA, Song Z, Bao Y, Peek RM Jr, Yao C, Chen LF, Ferguson AL, Wong GCL, Cheng J (2015) Helical antimicrobial polypeptides with radial amphiphilicity. Proc Natl Acad Sci USA 112:13155–13160PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55PubMedCrossRefGoogle Scholar
  124. Yi GS, Park CB, Kim SC, Cheong C (1996) Solution structure of an antimicrobial peptide buforin II. FEBS Lett 398:87–90PubMedCrossRefGoogle Scholar
  125. Yin LM, Edwards MA, Li J, Yip CM, Deber CM (2012) Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J Biol Chem 287:7738–7745PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yount NY, Bayer AS, Xiong YQ, Yeaman MR (2006) Advances in antimicrobial peptide immunobiology. Biopolymers 84:435–458PubMedCrossRefGoogle Scholar
  127. Zahn M, Berthold N, Kieslich B, Knappe D, Hoffmann R, Sträter N (2013) Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK. J Mol Biol 425:2463–2479PubMedCrossRefGoogle Scholar
  128. Zanetti M (2004) Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48PubMedCrossRefGoogle Scholar
  129. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395PubMedCrossRefGoogle Scholar
  130. Zhu X, Dong N, Wang Z, Ma Z, Zhang L, Ma Q, Shan A (2014) Design of imperfectly amphipathic α-helical antimicrobial peptides with enhanced cell selectivity. Acta Biomater 10:244–257PubMedCrossRefGoogle Scholar
  131. Zucht HD, Raida M, Adermann K, Mägert HJ, Forssmann WG (1995) Casocidin-I: a casein-αs2 derived peptide exhibits antibacterial activity. FEBS Lett 372:185–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Nadin Shagaghi
    • 1
  • Enzo A. Palombo
    • 1
  • Andrew H. A. Clayton
    • 1
  • Mrinal Bhave
    • 1
  1. 1.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations