Advertisement

Endophytic bacterial microbiome associated with leaves of genetically modified (AtAREB1) and conventional (BR 16) soybean plants

  • Katiúscia Kelli Montanari-Coelho
  • Alessandra Tenório Costa
  • Julio Cesar Polonio
  • João Lúcio Azevedo
  • Silvana Regina Rockenbach Marin
  • Renata Fuganti-Pagliarini
  • Yasunari Fujita
  • Kazuko Yamaguchi-Shinozaki
  • Kazuo Nakashima
  • João Alencar PamphileEmail author
  • Alexandre Lima Nepomuceno
Short Communication

Abstract

Plant leaves (phyllosphere) have a great potential for colonization and microbial growth, consisting of a dynamic environment in which several factors can interfere with the microbial population structure. The use of genetically modified (GM) plants has introduced several traits in agriculture, such as the improvement of plant drought tolerance, as observed in the AtAREB1 transcription factor overexpression in soybean (Glycine max L. Merrill). The present study aimed at investigating the taxonomic and functional profile of the leaf microbial community of bacteria found in GM (drought-tolerant event 1Ea2939) and conventional (BR 16) soybean plants. Bacterial DNA was extracted from leaf samples collected from each genotype and used for microbial diversity and richness analysis through the MiSeq Illumina platform. Functional prediction was performed using the PICRUSt tool and the STAMP v 2.1.3 software. The obtainment of the GM event 1Ea2939 showed minimum effects on the microbial community and in the potential for chemical-genetic communication, i.e. in the potential for symbiotic and/or mutualistic interaction between plants and their natural microbiota.

Keywords

Microbiome Phyllosphere Glycine max L. Merrill Drought tolerance MiSeq Illumina 

Notes

Acknowledgements

We thank Embrapa Soybean for providing the soybean leaf samples. We are also grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting a scholarship to KKM Coelho (Master’s); the National Postdoctoral Program (PNPD-UEM/CAPES) for granting a scholarship to AT Costa (Postdoctoral fellow); and to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) (311534/2014-7; 447265/2014-8) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Ahmed I, Yokota A, Yamazoe A, Fujiwara T (2007) Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57:1117–1125.  https://doi.org/10.1099/ijs.0.63867-0 CrossRefPubMedGoogle Scholar
  2. Ali N, Sorkhoh N, Salamah S, Eliyas M, Radwan S (2012) The potential of epiphytic hydrocarbon-utilizing bacteria on legume leaves for attenuation of atmospheric hydrocarbon pollutants. J Environ Manag 93:113–120.  https://doi.org/10.1016/j.jenvman.2011.08.014 CrossRefGoogle Scholar
  3. Andreote FD, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Sci Agric 71:528–539.  https://doi.org/10.1590/0103-9016-2014-0195 CrossRefGoogle Scholar
  4. Araújo WL, Lacava PT, Marcon J, Lima AOS, Sobral JK, Pizzirani-Kleiner AA, Azevedo JL (2010) Guia Prático: Isolamento e Caracterização de Microrganismos Endofíticos. Cop. Luiz de Queiroz, PiracicabaGoogle Scholar
  5. Barbosa EGG, Leite JP, Marin SRR, Marinho JP, Carvalho JDFC., Fuganti-Pagliarini R, Farias JRB, Neumaier N, Marcelino-Guimarães FC, de Oliveira MCN, Yamaguchi-Shinozaki K, Nakashima K, Maruyama K, Kanamori N, Fujita Y, Yoshida T, Nepomuceno AL (2013) Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Mol Biol Rep 31:719–730.  https://doi.org/10.1007/s11105-012-0541-4 CrossRefGoogle Scholar
  6. Berg G, Rybakova D, Grube M, Köberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002.  https://doi.org/10.1093/jxb/erv466 CrossRefPubMedGoogle Scholar
  7. Berry C, Hindley J, Ehrhardt AF, Grounds T, de Souza I, Davidson EW (1993) Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. J Bacteriol 175(2):510–518.  https://doi.org/10.1128/jb.175.2.510-518.1993 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MG, Beiko RG (2014) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38:90–118.  https://doi.org/10.1111/1574-6976.12035 CrossRefPubMedGoogle Scholar
  9. Bringel F, Couée I (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6:1–14.  https://doi.org/10.3389/fmicb.2015.00486 CrossRefGoogle Scholar
  10. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838.  https://doi.org/10.1146/annurev-arplant-050312-120106 CrossRefPubMedGoogle Scholar
  11. Catuchi TA, Vítolo HF, Bertolli SC, Souza GM (2011) Tolerance to water deficiency between two soybean cultivars: transgenic versus conventional. Ciência Rural 41(3):373–378.  https://doi.org/10.1590/S0103-84782011000300002 CrossRefGoogle Scholar
  12. Chang WS, van de Mortel M, Nielsen L, de Guzman GN, Li X, Halverson LJ (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J of bacteriol 189(22):8290–8299.  https://doi.org/10.1128/JB.00727-07 CrossRefGoogle Scholar
  13. Charles JF, Nielson-LeRoux C, Delécluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472.  https://doi.org/10.1146/annurev.en.41.010196.002315 CrossRefPubMedGoogle Scholar
  14. CONAB - National Company of Food Supply (2017) Brazilian crop assessment-Grain, 2016/2017 crops, fourth inventory survey. http://www.conab.gov.br/conteudos.php?a=1253. Accessed 23 Jan 2017
  15. Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant Microbe Interact 28:274–285.  https://doi.org/10.1094/MPMI-10-14-0331-FI CrossRefPubMedGoogle Scholar
  16. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 106:16428–16433.  https://doi.org/10.1073/pnas.0905240106 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Desclaux D, Huynh TT, Roumet P (2000) Identification of soybean plant characteristics that indicate the timing of drought stress. Crop Sci 40(3):716–722.  https://doi.org/10.2135/cropsci2000.403716x CrossRefGoogle Scholar
  18. Garbeva P, Van Elsas JD, Van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32.  https://doi.org/10.1007/s11104-007-9432-0 CrossRefGoogle Scholar
  19. Garcia A, Polonio JC, Polli AD, Santos CM, Rhoden SA, Quecine MC, Azevedo JL, Pamphile JA (2016) Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genet Mol Res 15:gmr15049020.  https://doi.org/10.4238/gmr15049020 CrossRefGoogle Scholar
  20. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Miller W (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455.  https://doi.org/10.1101/gr.4086505 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hartman GL, West ED, Herman TK (2011) Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3:5–17.  https://doi.org/10.1007/s12571-010-0108-x CrossRefGoogle Scholar
  22. Hayat R, Ahmed I, Paek J, Ehsan M, Iqbal M, Chang YH (2013) A moderately boron-tolerant candidatus novel soil bacterium Lysinibacillus pakistanensis sp. nov. cand., isolated from soybean (Glicine max L.) rhizosphere. Pak J Bot 45:41–50Google Scholar
  23. He M, Li X, Liu H, Miller SJ, Wang G, Rensing C (2011) Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater 185:682–688.  https://doi.org/10.1016/j.jhazmat.2010.09.072 CrossRefPubMedGoogle Scholar
  24. Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW (2010) Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J 4:267–278.  https://doi.org/10.1038/ismej.2009.100 CrossRefPubMedGoogle Scholar
  25. Illumina (2010) Illumina sequencing technology. Image Rochester, New YorkGoogle Scholar
  26. Illumina (2013) An introduction to next-generation sequencing technology. Illumina Inc, San DiegoGoogle Scholar
  27. Jackson CR, Stone BW, Tyler HL (2015) Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture 5:170–187.  https://doi.org/10.3390/agriculture5020170 CrossRefGoogle Scholar
  28. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390.  https://doi.org/10.1038/ismej.2011.192 CrossRefPubMedGoogle Scholar
  29. Kron AP, Souza GM, Ribeiro RV (2008) Water deficiency at different developmental stages of Glycine max can improve drought tolerance. Bragantia 67(1):43–49.  https://doi.org/10.1590/S0006-87052008000100005 CrossRefGoogle Scholar
  30. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Beiko RG (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821.  https://doi.org/10.1038/nbt.2676 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Leite JP, Barbosa EGG, Marin SRR, Marinho JP, Carvalho JFC, Pagliarini RF, Cruz AS, Oliveira MCN, Farias JRB, Neumaier N, Guimarães FCM, Yoshida T, Nakamori N, Fujita Y, Nakashima K, Shinozaki KY, Desidério JA, Nepomuceno AL (2014) Overexpression of the activated form of the AtAREB1 gene (AtAREB1 Delta QT) improves soybean responses to water deficit. Genet Mol Res 13:6272–6286.  https://doi.org/10.4238/2014 CrossRefPubMedGoogle Scholar
  32. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883.  https://doi.org/10.1128/AEM.69.4.1875-1883.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru A-E, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100.  https://doi.org/10.1016/B978-0-12-387661-4.00004-5 CrossRefPubMedGoogle Scholar
  34. Lozano LC, Dussán J (2013) Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J Microbiol Biotechnol 29:1383–1389.  https://doi.org/10.1007/s11274-013-1301-9 CrossRefPubMedGoogle Scholar
  35. Lucero ME, Unc A, Cooke P, Dowd S, Sun S (2011) Endophyte microbiome diversity in micropropagated Atriplex canescens and Atriplex torreyi var griffithsii. PLoS ONE 6(3):e17693. doi. https://doi.org/10.1371/journal.pone.0017693 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Marinho JP, Kanamori N, Ferreira LC, Fuganti-Pagliarini R, Carvalho JFC, Freitas RA, Marin SRR, Rodrigues FA, Mertz-Henning LM, Farias JRB, Neumaier N, de Oliveira MCN, Marcelino-Guimarães FC, Yoshida T, Fujita Y, Yamaguchi-Shinozaki K, Nakashima K, Nepomuceno AL (2016) Characterization of molecular and physiological responses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Mol Biol Rep 34:410–426.  https://doi.org/10.1007/s11105-015-0928-0 CrossRefGoogle Scholar
  37. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618.  https://doi.org/10.1038/ismej.2011.139 CrossRefPubMedGoogle Scholar
  38. Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. ‎Annu Rev Genet 50:211–234.  https://doi.org/10.1146/annurev-genet-120215-034952 CrossRefPubMedGoogle Scholar
  39. Nakamura LK, Shida O, Takagi H, Komagata K (2002) Bacillus pycnus sp. nov. and Bacillus neidei sp. nov., round-spored bacteria from soil. Int J Syst Evol Microbiol 52:501–505.  https://doi.org/10.1099/00207713-52-2-501 CrossRefPubMedGoogle Scholar
  40. Pamphile JA, Azevedo JL (2002) Molecular characterization of endophytic strains of Fusarium verticillioides (= Fusarium moniliforme) from maize (Zea mays L.). World J Microbiol Biotechnol 18:391–396.  https://doi.org/10.1023/A:1015507008786 CrossRefGoogle Scholar
  41. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124.  https://doi.org/10.1093/bioinformatics/btu494 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Pei CX, Liu Q, Dong CS, Li H, Jiang JB, Gao WJ (2010) Diversity and abundance of the bacterial 16S rRNA gene sequences in forestomach of alpacas (Lama pacos) and sheep (Ovis aries). Anaerobe 16(4):426–432.  https://doi.org/10.1016/j.anaerobe.2010.06.004 CrossRefPubMedGoogle Scholar
  43. Peñuelas J, Terradas J (2014) The foliar microbiome. Trends in Plant Sci 19(5):278–280.  https://doi.org/10.1016/j.tplants.2013.12.007 CrossRefGoogle Scholar
  44. Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799.  https://doi.org/10.1038/nrmicro3109 CrossRefPubMedGoogle Scholar
  45. Pinto C, Gomes AC (2016) Vitis vinifera microbiome: from basic research to technological development. Biocontrol 61:243–256.  https://doi.org/10.1007/s10526-016-9725-4 CrossRefGoogle Scholar
  46. Pitta DW, Kumar S, Vecchiarelli B, Shirley DJ, Bittinger K, Baker LD, Ferguson JD, Thomsen N (2014) Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. J Anim Sci 92(9):4014–4022.  https://doi.org/10.2527/jas.2014-7621 CrossRefPubMedGoogle Scholar
  47. Qiu YL, Kuang XZ, Shi XS, Yuan XZ, Guo RB (2014) Paludibacter jiangxiensis sp. nov., a strictly anaerobic, propionate-producing bacterium isolated from rice paddy field. Arch Microbiol 196(3):149–155.  https://doi.org/10.1007/s00203-013-0951-1 CrossRefPubMedGoogle Scholar
  48. Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6:1812–1822.  https://doi.org/10.1038/ismej.2012.32 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rastogi G, Coaker GL, Leveau JH (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10.  https://doi.org/10.1111/1574-6968.12225 CrossRefPubMedGoogle Scholar
  50. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893.  https://doi.org/10.1111/j.1462-2920.2010.02258.x CrossRefPubMedPubMedCentralGoogle Scholar
  51. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Sahl JW (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shin JH, Vaughn JN, Abdel-Haleem H, Chavarro C, Abernathy B, Do Kim K, Li Z (2015) Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biol 15:26.  https://doi.org/10.1186/s12870-015-0422-8 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Souza GM, Catuchi TA, Bertolli SC, Soratto RP (2013) Soybean under water deficit: physiological and yield responses. In: Board JE (ed) A comprehensive survey of international soybean research-genetics, physiology, agronomy and nitrogen relationships. InTech, Croatia, pp 273–298.  https://doi.org/10.5772/54269 Google Scholar
  54. Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS ONE 9(6):e100709. doi. https://doi.org/10.1371/journal.pone.0100709 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tangsongcharoen C, Jupatanakul N, Promdonkoy B, Dimopoulos G, Boonserm P (2017) Molecular analysis of Culex quinquefasciatus larvae responses to Lysinibacillus sphaericus Bin toxin. PLoS ONE 12(4):e0175473.  https://doi.org/10.1371/journal.pone.0175473 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56(1):39–44.  https://doi.org/10.1099/ijs.0.63896-0 CrossRefPubMedGoogle Scholar
  57. Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, Knight R (2014) The intestinal metabolome: an intersection between microbiota and host. Gastroenterology 146:1470–1476.  https://doi.org/10.1053/j.gastro.2014.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Vaishampayan P, Miyashita M, Ohnishi A, Satomi M, Rooney A, La Duc MT, Venkateswaran K (2009) Description of Rummeliibacillus stabekisii gen. nov., sp. nov. and reclassification of Bacillus pycnus Nakamura et al. 2002 as Rummeliibacillus pycnus comb. nov. Int J Syst Evol Microbiol 59:1094–1099.  https://doi.org/10.1099/ijs.0.006098-0 CrossRefPubMedGoogle Scholar
  59. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206.  https://doi.org/10.1111/nph.13312 CrossRefPubMedGoogle Scholar
  60. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840.  https://doi.org/10.1038/nrmicro2910 CrossRefPubMedGoogle Scholar
  61. Yang G, Chen S, Zhou S, Liu Y (2015) Genome sequence of a dissimilatory Fe (III)-reducing bacterium Geobacter soli type strain GSS01 T. Stand Genom Sci 10:1–10.  https://doi.org/10.1186/s40793-015-0117-7 CrossRefGoogle Scholar
  62. Zdanowski MK, Bogdanowicz A, Gawor J, Gromadka R, Wolicka D, Grzesiak J (2017) Enrichment of cryoconite hole anaerobes: implications for the subglacial microbiome. Microb Ecol 73(3):532–538.  https://doi.org/10.1007/s00248-016-0886-6 CrossRefPubMedGoogle Scholar
  63. Zheng W, Tsompana M, Ruscitto A, Sharma A, Genco R, Sun Y, Buck MJ (2015) An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 3(1):48.  https://doi.org/10.1186/s40168-015-0110-9 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Katiúscia Kelli Montanari-Coelho
    • 1
  • Alessandra Tenório Costa
    • 1
  • Julio Cesar Polonio
    • 1
  • João Lúcio Azevedo
    • 2
  • Silvana Regina Rockenbach Marin
    • 3
  • Renata Fuganti-Pagliarini
    • 3
  • Yasunari Fujita
    • 4
  • Kazuko Yamaguchi-Shinozaki
    • 4
  • Kazuo Nakashima
    • 5
  • João Alencar Pamphile
    • 1
    Email author
  • Alexandre Lima Nepomuceno
    • 3
  1. 1.Departamento de Biotecnologia, Genética e Biologia Celular (DBC)Universidade Estadual de MaringáMaringáBrazil
  2. 2.Escola Superior de Agricultura “Luiz de Queiroz”Universidade de São PauloPiracicabaBrazil
  3. 3.Empresa Brasileira de Pesquisa Agropecuária, Centro Nacional de Pesquisa de Soja (EMBRAPA/Soja)LondrinaBrazil
  4. 4.Japan International Research Center for Agricultural SciencesTsukubaJapan
  5. 5.Laboratory of Plant Molecular PhysiologyTokyo UniversityTokyoJapan

Personalised recommendations