Skip to main content

Structure elucidation and in silico docking studies of a novel furopyrimidine antibiotics synthesized by endolithic bacterium Actinomadura sp. AL2

Abstract

On screening of endolithic actinobacteria from a granite rock sample of Meghalaya for antibacterial compound, a novel antibacterial compound CCp1 was isolated from the fermentation broth of Actinomadura sp. AL2. On purification of the compound based on chromatographic techniques followed by characterization with FT-IR, UV–visible, 1H NMR, 13C NMR and mass spectrometry, the molecular formula of the compound was generated as C20H17N3O2, a furopyrimidine derivative. In vitro antibacterial activity of the compound was evaluated against both Gram positive and negative bacteria by agar well diffusion assay. The compound had lowest MIC (2.00 µg/ml) for Bacillus subtilis and highest MIC (> 64 µg/ml) for Staphylococcus epidermidis and Pseudomonas aeruginosa. The study revealed that the compound has potential antibacterial activity. The mode of action of the antibacterial compound was evaluated through in silico studies for its ability to bind DNA gyrase, 30S RNA molecules, OmpF porins and N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU). The antibacterial compound demonstrated more favorable docking with DNA gyrase, 30S RNA molecules and OmpF porins than GlmU which support the antibacterial compound CCp1 can be as a promising broad spectrum antibiotic agent with “multitarget” characteristics.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abdulla H (2009) Bioweathering and biotransformation of granitic rock minerals by actinomycetes. Microb Ecol 58(4):753–761. doi:10.1007/s00248-009-9549-1

    CAS  Article  Google Scholar 

  • Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–159. doi:10.1002/prot.21495

    CAS  Article  Google Scholar 

  • Bajpai VK, Kang SC (2011) Isolation and characterization of biologically active secondary metabolites from Metasequoia glyptostroboides Miki ex Hu. J Food Safety 31(2):276–283. doi:10.1111/j.1745-4565.2011.00298.x

    CAS  Article  Google Scholar 

  • Baker D, Mocek U, Garr C (2000) Natural products versus combinatorials: a case study. In: Wrigley SA, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) New leads for pharmaceutical and agrochemical industries. The royal society of chemistry, Cambridge, pp 66–72

    Google Scholar 

  • Balachandran C, Duraipandiyan V, Emi N, Ignacimuthu S (2015) Antimicrobial and cytotoxic properties of Streptomyces sp. (ERINLG-51) Isolated from Southern Western Ghats. South Ind J Biol Sci 1:7–14. doi:10.22205/sijbs/2015/v1/i1/100436

    Google Scholar 

  • Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466(7309):935–940. doi:10.1038/nature09197

    Article  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. doi:10.1038/ja.2005.1

    CAS  Article  Google Scholar 

  • Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395. doi:10.1038/ja.2012.27

    CAS  Article  Google Scholar 

  • Bhattacharjee K, Joshi SR (2016) A selective medium for recovery and enumeration of endolithic bacteria. J Microbiol Methods 129:44–54. doi:10.1016/j.mimet.2016.07.026

    Article  Google Scholar 

  • Bhattacharjee K, Banerjee S, Joshi SR (2012) Diversity of Streptomyces spp. in Eastern Himalayan region-computational RNomics approach to phylogeny. Bioinformation 8(12):548–554. doi:10.6026/97320630008548

    Article  Google Scholar 

  • Bhattacharjee K, Banerjee S, Bawitlung L, Krishnappa D, Joshi SR (2014) A study on parameters optimization for degradation of endosulfan by bacterial consortia isolated from contaminated soil. Proc Natl Acad Sci India Sect B Biol Sci 84(3):657–667. doi:10.1007/s40011-013-0223-5

    Article  Google Scholar 

  • Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103(7):1143–1154. doi:10.1016/S0092-8674(00)00216-6

    CAS  Article  Google Scholar 

  • Buurman ET, Andrews B, Gao N, Hu J, Keating TA et al (2011) In vitro validation of acetyltransferase activity of GlmU as an antibacterial target in Haemophilus influenzae. J Biol Chem 286(47):40734–40742. doi:10.1074/jbc.M111.274068

    CAS  Article  Google Scholar 

  • Cao C, Jiang J, Sun H, Huang Y, Tao F, Lian B (2016) Carbonate mineral formation under the influence of limestone-colonizing actinobacteria: morphology and polymorphism. Front Microbiol 7:366. doi:10.3389/fmicb.2016.00366

    Google Scholar 

  • Ceccarelli M, Danelon C, Laio A, Parrinello M (2004) Microscopic mechanism of antibiotics translocation through a porin. Biophys J 87(1):58–64. doi:10.1529/biophysj.103.037283

    CAS  Article  Google Scholar 

  • Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218(19):2684–2691. doi:10.1016/j.chroma.2010.12.069

    CAS  Article  Google Scholar 

  • Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry, Wiley, New York, pp 1–22

    Google Scholar 

  • Cockell CS, Calsteren PV, Mosselmans JFW, Franchi IA, Gilmour I et al (2010) Microbial endolithic colonization and the geochemical environment in young seafloor basalts. Chem Geol 279:17–30. doi:10.1016/j.chemgeo.2010.09.015

    CAS  Article  Google Scholar 

  • Coldham NG, Webber M, Woodward MJ, Piddock LJ (2010) A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother 65(8):1655–1663. doi:10.1093/jac/dkq169

    CAS  Article  Google Scholar 

  • Collin F, Karkare S, Maxwell A (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 92(3):479–497. doi:10.1007/s00253-011-3557-z

    CAS  Article  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695. doi:10.1016/j.bbagen.2013.02.008

    CAS  Article  Google Scholar 

  • Cui J, Hu C, Yang Y, Wu Y, Yang L et al (2012) Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials. J Mater Chem 22:8121–8126. doi:10.1039/C2JM16441H

    CAS  Article  Google Scholar 

  • Demain AL (2006) From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33(7):486–495. doi:10.1007/s10295-005-0076-x

    CAS  Article  Google Scholar 

  • Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336. doi:10.3390/metabo2020303

    CAS  Article  Google Scholar 

  • Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J Geophys Res 112:G02030. doi:10.1029/2006JG000385

    Google Scholar 

  • Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient Unbound Docking of Rigid Molecules. In: Gusfield D et al. (ed) Proceedings of the 2’nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Italy, Lecture Notes in Computer Science 2452. Springer Verlag, pp 185–200

  • Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S (2016) New antimicrobial anthraquinone 6,61-bis (1,5,7-trihydroxy-3 hydroxymethylanthraquinone) isolated from Streptomyces sp. isolate ERI-26. Saudi J Biol Sci 23(6):731–735. doi:10.1016/j.sjbs.2016.02.008

    CAS  Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. doi:10.1007/BF01734359

    CAS  Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39(4):783–791. doi:10.2307/2408678

    Article  Google Scholar 

  • Groth I, Vettermann R, Schuetze B, Schumann P, Saiz-Jimenez C (1999) Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo). J Microbiol Methods 36(1–2):115–122. doi:10.1016/S0167-7012(99)00016-0

    CAS  Article  Google Scholar 

  • Groth I, Tan GY, González JM, Laiz L, Carlsohn MR et al (2007) Amycolatopsis nigrescens sp. nov., an actinomycete isolated from a Roman catacomb. Int J Syst Evol Microbiol 57(Pt 3):513–519. doi:10.1099/ijs.0.64602-0

    CAS  Article  Google Scholar 

  • Hazra S, Saha P, Ray J, Podder A (2010) Simple statistical and mineralogical studies as petrogenetic indicator for Neoproterozoic Mylliem porphyritic granites of East Khasi Hills, Meghalaya, Northeastern India. J Geol Soc India 75:760–768. doi:10.1007/s12594-010-0061-5

    CAS  Article  Google Scholar 

  • Holt JG (1994) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  • Hong K, Gao AH, Xie QY, Gao H, Zhuang L et al (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7(1):24–44. doi:10.3390/md7010024

    CAS  Article  Google Scholar 

  • Hong W, Zeng J, Xie J (2014) Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 4(4):258–265. doi:10.1016/j.apsb.2014.06.012

    Article  Google Scholar 

  • Hossain MI, Bhuiyan MMH (2009) Synthesis and antimicrobial activities of some new thieno and furopyrimidine derivatives. J Sci Res 1:317–325. doi:10.3329/jsr.v1i2.2299

    CAS  Google Scholar 

  • Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K (2012) Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 65:355–359. doi:10.1038/ja.2012.30

    CAS  Article  Google Scholar 

  • Imamura K, Odagawa A, Tanabe K, Hayakawa Y, Otake N (1984) Akrobomycin, a new anthracycline antibiotic. J Antibiot 37:83–84. doi:10.7164/antibiotics.37.83

    CAS  Article  Google Scholar 

  • Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter current chromatography. J Chromatogr A 1065(2):145–168. doi:10.1016/j.chroma.2004.12.044

    CAS  Article  Google Scholar 

  • Karuppiah V, Li Y, Sun W, Feng G, Li Z (2015) Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea. Appl Microbiol Biotechnol 99(14):5939–5950. doi:10.1007/s00253-015-6547-8

    CAS  Article  Google Scholar 

  • Katritzky AR, Ji Y, Fang Y, Prakash I (2001) Novel syntheses of 2,3-disubstituted Benzofurans. J Org Chem 66:5613–5615. doi:10.1021/jo010278p

    CAS  Article  Google Scholar 

  • Katrusiak A, Katrusiak A, Bałoniak S (1994) Reactivity of 6-chloro-4- and 5-hydrazino-2-phenyl-3(2H)-pyridazinones with Vilsmeier reagent. Tetrahedron 50(45):12933–12940. doi:10.1016/S0040-4020(01)81212-6

    CAS  Article  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    CAS  Article  Google Scholar 

  • Kimura T, Iwatsuki M, Asami Y, Ishiyama A, Hokari R et al (2016) Anti-trypanosomal compound, sagamilactam, a new polyene macrocyclic lactam from Actinomadura sp. K13-0306. J Antibiot 69(11):818–824. doi:10.1038/ja.2016.28

    CAS  Article  Google Scholar 

  • Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435. doi:10.1038/nrmicro2333

    CAS  Article  Google Scholar 

  • Kotoda N, Shin-Ya K, Furihata K, Hayakawa Y, Seto H (1997) Isolation and structure elucidation of novel neuronal cell protecting substances, carbazomadurins A and B produced by Actinomadura madurae. J Antibiot 50:770–772. doi:10.7164/antibiotics.50.770

    CAS  Article  Google Scholar 

  • Kwon Y, Kim SH, Shin Y, Bae M, Kim BY, Lee SK et al (2014) A new benzofuran glycoside and indole alkaloids from a sponge-associated rare actinomycete, Amycolatopsis sp. Mar Drugs 12(4):2326–2340. doi:10.3390/md12042326

    Article  Google Scholar 

  • Landwehr W, Wolf C, Wink J (2016) Actinobacteria and myxobacteria - two of the most important bacterial resources for novel antibiotics. In: Stadler M, Dersch P (eds) How to overcome the antibiotic crisis, Springer, New York, pp 273–302

    Chapter  Google Scholar 

  • Lapchinskaya OA, Saburova TA, Ponomarenko VI, 1975. Production of carminomycin by auxotrophic mutants of Actinomadura carminata. J Basic Microbiol 15(5):383–385. doi:10.1002/jobm.19750150512

    CAS  Google Scholar 

  • Lee DW, Lee SD (2010) Actinomadura scrupuli sp. nov., isolated from rock. Int J Syst Evol Microbiol 60:2647–2651. doi:10.1099/ijs.0.017608-0

    CAS  Article  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol 69(4):2023–2031. doi:10.1128/AEM.69.4.2023-2031.2003

    CAS  Article  Google Scholar 

  • Li S, Shi Y, Zhang Q, Liao X, Zhu L, Lou K (2013) Phylogenetic diversity of endolithic bacteria in Bole granite rock in Xinjiang. Acta Ecol Sin 33(4):178–184. doi:10.1016/j.chnaes.2013.05.003

    Article  Google Scholar 

  • Lima-Filho JVM, Carvalho AFFU, Freitas SM, Melo VMM (2002) Antibacterial activity of extracts of six macroalgae from the north eastern Brasilian coast. Braz J Microbiol 33:311–313. doi:10.1590/S1517-83822002000400006

    Article  Google Scholar 

  • Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36(Web Server Issue):W229–W232. doi:10.1093/nar/gkn186

    CAS  Article  Google Scholar 

  • Masuda M, Abe T, Sato S, Suzuki T, Suzuki M (1997) Diversity of halogenated secondary metabolites in the red alga Laurencia nipponica (Rhodomelaceae Ceramiales). J Phycol 33(2):196–208. doi:10.1111/j.0022-3646.1997.00196.x

    CAS  Article  Google Scholar 

  • McGuigan C, Brancale A, Barucki H, Srinivasan S, Jones G et al (2001) Furano pyrimidines as novel potent and selective anti-VZV agents. Antivir Chem Chemother 12(2):77–89. doi:10.1177/095632020101200201

    CAS  Article  Google Scholar 

  • McNamara CJ, Perry TD 4th, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51(1):51–64. doi:10.1007/s00248-005-0200-5

    Article  Google Scholar 

  • Mehra R, Rani C, Mahajan P, Vishwakarma RA, Khan IA, Nargotra A (2016) Computationally guided identification of novel Mycobacterium tuberculosis GlmU inhibitory leads, their optimization, and in vitro validation. ACS Comb Sci 18(2):100–116. doi:10.1021/acscombsci.5b00019

    CAS  Article  Google Scholar 

  • Michener CD, Sokal RR (1957) A quantitative approach to a problem in classification. Evol Int J Org Evol 11(2):130–162. doi:10.2307/2406046

    Article  Google Scholar 

  • Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach. Actinomycetologica 9:100–106. doi:10.3209/saj.7_100

    Article  Google Scholar 

  • Mochalkin I, Lightle S, Zhu Y, Ohren JF, Spessard C et al (2007) Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci 16(12):2657–2666. doi:10.1110/ps.073135107

    CAS  Article  Google Scholar 

  • Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low earth orbit. Appl Environ Microbiol 76(7):2115–2121. doi:10.1128/AEM.02547-09

    CAS  Article  Google Scholar 

  • Palepu NR, Nongbri SL, Premkumar JR, Verma AK, Bhattacharjee K et al (2015) Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru(II), Rh(III) and Ir(III) as in vitro antitumor, antibacterial and fluorescence imaging agents. J Biol Inorg Chem 20(4):619–638. doi:10.1007/s00775-015-1249-3

    CAS  Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084

    CAS  Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. doi:10.1093/oxfordjournals.molbev.a040454

    CAS  Google Scholar 

  • Sayed GH, Sayed MA, Mahmoud MR, Shaaban SS (2002) Synthesis and reactions of new pyridazinone derivatives of expected antimicrobial activities. Egypt J Chem 45:767–776

    CAS  Google Scholar 

  • Schmitz A, Felder S, Hover T, Kehraus S, Neu E, Lohr F, Konig GM, Schaberle TF (2013) Antibiotics from gliding bacteria. Phytochem Rev 12:507. doi:10.1007/s11101-012-9224-x

    CAS  Article  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33:W363-367. doi:10.1093/nar/gki481

    Article  Google Scholar 

  • Selvin J, Shanmughapriya S, Gandhimathi R, SeghalKiran G, RajeethaRavji T et al (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83(3):435–445. doi:10.1007/s00253-009-1878-y

    CAS  Article  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for Characterization of Streptomyces Species. Int J Syst Evol Microbiol 16:313–340. doi:10.1099/00207713-16-3-313

    Google Scholar 

  • Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24(1):71–109. doi:10.1128/CMR.00030-10

    CAS  Article  Google Scholar 

  • Strauss DG, Baum M, Fleck WF (1986) Butylmaduramycin, a new antibiotic from Actinomadura rubra. J Basic Microbiol 26(3):169–172. doi:10.1002/jobm.3620260307

    CAS  Article  Google Scholar 

  • Tiwari K, Gupta RK (2012) Rare actinobacteria: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32(2):108–132. doi:10.3109/07388551.2011.562482

    CAS  Article  Google Scholar 

  • Vaca I, Casqueiro J, Ullán RV, Rumbero A, Chávez R, Martín JF (2011) A preparative method for the purification of isopenicillin N from genetically blocked Acremonium chrysogenum strain TD189: studies on the degradation kinetics and storage conditions. J Antibiot 64:447–451. doi:10.1038/ja.2011.30

    CAS  Article  Google Scholar 

  • Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 9(8):647–658. doi:10.1016/S0969-2126(01)00629-3

    CAS  Article  Google Scholar 

  • Vicens Q, Westhof E (2002) Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol 9(6):747–755. doi:10.1016/S1074-5521(02)00153-9

    CAS  Article  Google Scholar 

  • Vicens Q, Westhof E (2003) Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol 326(4):1175–1188. doi:10.1016/S0022-2836(02)01435-3

    CAS  Article  Google Scholar 

  • Vithani N, Bais V, Prakash B (2014) GlmU (N-acetylglucosamine-1-phosphate uridyltransferase) bound to three magnesium ions and ATP at the active site. Acta Crystallogr F Struct Biol Commun 70(Pt 6):703–708. doi:10.1107/S2053230X14008279

    CAS  Article  Google Scholar 

  • Waitz JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D et al (1981) Kijanimicin (Sch 25663), a novel antibiotic produced by Actinomadura kijaniata SCC 1256, Fermentation, isolation, characterization and biological properties. J Antibiot 34(9):1101–1106. doi:10.7164/antibiotics.34.1101

    CAS  Article  Google Scholar 

  • Walker JJ, Pace NR (2007) Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347. doi:10.1146/annurev.micro.61.080706.093302

    CAS  Article  Google Scholar 

  • Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014. doi:10.1038/nature03447

    CAS  Article  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y et al (2007) Lithic cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61(3):470–482. doi:10.1111/j.1574-6941.2007.00351.x

    CAS  Article  Google Scholar 

  • Weinstein GH, Wagman MJ (1984) Chromatography of antibiotics. Elsevier, Amsterdam

    Google Scholar 

  • Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. doi:10.1038/nprot.2007.521

    CAS  Article  Google Scholar 

  • Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12(1):35–48. doi:10.1038/nrmicro3155

    CAS  Article  Google Scholar 

  • Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26(1):44–71. doi:10.1039/B800164M

    CAS  Article  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668-72. doi:10.1093/nar/gkj067

    Google Scholar 

  • Wong FK, Lau MC, Lacap DC, Aitchison JC, Cowan DA, Pointing SB (2010) Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb Ecol 59(4):689–699. doi:10.1007/s00248-009-9607-8

    Article  Google Scholar 

  • Zheng L, Chen H, Han X, Lin W, Yan X (2005) Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol 21(2):201–206. doi:10.1007/s11274-004-3318-6

    CAS  Article  Google Scholar 

  • Ziervogel BK, Roux B (2013) The binding of antibiotics in OmpF porin. Structure 21(1):76–87. doi:10.1016/j.str.2012.10.014

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The NMR facility was provided by SAIF, N.E.H.U, Shillong. The UV–visible spectroscopic facility was provided by Central Instrumentation Facility, School of Life Sciences, N.E.H.U, Shillong and FT-IR facility was provided by CIF, I.A.S.S.T, Guwahati. We are also grateful to Dr. S. Sangilipandi, Centre for Advanced Studies in Chemistry, N.E.H.U, Shillong for the help during TLC and purification studies.

Authors’ contribution

KB and SJ designed and carried out the experiments, analyzed the data and drafted the manuscript. NP and KR performed the MS experiment and helped in analyzing the spectrometry data and structure elucidation. SK and PP conducted the in silico docking studies. SJ supervised the whole research work and revised the manuscript. All authors read and approved the final manuscript.

Funding

This research was partly supported by the Department of Science & Technology, Government of India FIST programme to the parent department. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. KB is thankful to UGC, New Delhi for providing financial support in the form of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santa Ram Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 993 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, K., Kumar, S., Palepu, N.R. et al. Structure elucidation and in silico docking studies of a novel furopyrimidine antibiotics synthesized by endolithic bacterium Actinomadura sp. AL2. World J Microbiol Biotechnol 33, 178 (2017). https://doi.org/10.1007/s11274-017-2343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2343-1

Keywords

  • Actinomadura sp.
  • Bioactive compound
  • Antibacterial agent
  • Furopyrimidine
  • Molecular docking