Abdulla H (2009) Bioweathering and biotransformation of granitic rock minerals by actinomycetes. Microb Ecol 58(4):753–761. doi:10.1007/s00248-009-9549-1
CAS
Article
Google Scholar
Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–159. doi:10.1002/prot.21495
CAS
Article
Google Scholar
Bajpai VK, Kang SC (2011) Isolation and characterization of biologically active secondary metabolites from Metasequoia glyptostroboides Miki ex Hu. J Food Safety 31(2):276–283. doi:10.1111/j.1745-4565.2011.00298.x
CAS
Article
Google Scholar
Baker D, Mocek U, Garr C (2000) Natural products versus combinatorials: a case study. In: Wrigley SA, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) New leads for pharmaceutical and agrochemical industries. The royal society of chemistry, Cambridge, pp 66–72
Google Scholar
Balachandran C, Duraipandiyan V, Emi N, Ignacimuthu S (2015) Antimicrobial and cytotoxic properties of Streptomyces sp. (ERINLG-51) Isolated from Southern Western Ghats. South Ind J Biol Sci 1:7–14. doi:10.22205/sijbs/2015/v1/i1/100436
Google Scholar
Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR et al (2010) Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature 466(7309):935–940. doi:10.1038/nature09197
Article
Google Scholar
Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. doi:10.1038/ja.2005.1
CAS
Article
Google Scholar
Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395. doi:10.1038/ja.2012.27
CAS
Article
Google Scholar
Bhattacharjee K, Joshi SR (2016) A selective medium for recovery and enumeration of endolithic bacteria. J Microbiol Methods 129:44–54. doi:10.1016/j.mimet.2016.07.026
Article
Google Scholar
Bhattacharjee K, Banerjee S, Joshi SR (2012) Diversity of Streptomyces spp. in Eastern Himalayan region-computational RNomics approach to phylogeny. Bioinformation 8(12):548–554. doi:10.6026/97320630008548
Article
Google Scholar
Bhattacharjee K, Banerjee S, Bawitlung L, Krishnappa D, Joshi SR (2014) A study on parameters optimization for degradation of endosulfan by bacterial consortia isolated from contaminated soil. Proc Natl Acad Sci India Sect B Biol Sci 84(3):657–667. doi:10.1007/s40011-013-0223-5
Article
Google Scholar
Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103(7):1143–1154. doi:10.1016/S0092-8674(00)00216-6
CAS
Article
Google Scholar
Buurman ET, Andrews B, Gao N, Hu J, Keating TA et al (2011) In vitro validation of acetyltransferase activity of GlmU as an antibacterial target in Haemophilus influenzae. J Biol Chem 286(47):40734–40742. doi:10.1074/jbc.M111.274068
CAS
Article
Google Scholar
Cao C, Jiang J, Sun H, Huang Y, Tao F, Lian B (2016) Carbonate mineral formation under the influence of limestone-colonizing actinobacteria: morphology and polymorphism. Front Microbiol 7:366. doi:10.3389/fmicb.2016.00366
Google Scholar
Ceccarelli M, Danelon C, Laio A, Parrinello M (2004) Microscopic mechanism of antibiotics translocation through a porin. Biophys J 87(1):58–64. doi:10.1529/biophysj.103.037283
CAS
Article
Google Scholar
Choma IM, Grzelak EM (2011) Bioautography detection in thin-layer chromatography. J Chromatogr A 1218(19):2684–2691. doi:10.1016/j.chroma.2010.12.069
CAS
Article
Google Scholar
Coates J (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA (ed) Encyclopedia of analytical chemistry, Wiley, New York, pp 1–22
Google Scholar
Cockell CS, Calsteren PV, Mosselmans JFW, Franchi IA, Gilmour I et al (2010) Microbial endolithic colonization and the geochemical environment in young seafloor basalts. Chem Geol 279:17–30. doi:10.1016/j.chemgeo.2010.09.015
CAS
Article
Google Scholar
Coldham NG, Webber M, Woodward MJ, Piddock LJ (2010) A 96-well plate fluorescence assay for assessment of cellular permeability and active efflux in Salmonella enterica serovar Typhimurium and Escherichia coli. J Antimicrob Chemother 65(8):1655–1663. doi:10.1093/jac/dkq169
CAS
Article
Google Scholar
Collin F, Karkare S, Maxwell A (2011) Exploiting bacterial DNA gyrase as a drug target: current state and perspectives. Appl Microbiol Biotechnol 92(3):479–497. doi:10.1007/s00253-011-3557-z
CAS
Article
Google Scholar
Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695. doi:10.1016/j.bbagen.2013.02.008
CAS
Article
Google Scholar
Cui J, Hu C, Yang Y, Wu Y, Yang L et al (2012) Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials. J Mater Chem 22:8121–8126. doi:10.1039/C2JM16441H
CAS
Article
Google Scholar
Demain AL (2006) From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol 33(7):486–495. doi:10.1007/s10295-005-0076-x
CAS
Article
Google Scholar
Dias DA, Urban S, Roessner U (2012) A historical overview of natural products in drug discovery. Metabolites 2:303–336. doi:10.3390/metabo2020303
CAS
Article
Google Scholar
Dong H, Rech JA, Jiang H, Sun H, Buck BJ (2007) Endolithic cyanobacteria in soil gypsum: occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. J Geophys Res 112:G02030. doi:10.1029/2006JG000385
Google Scholar
Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient Unbound Docking of Rigid Molecules. In: Gusfield D et al. (ed) Proceedings of the 2’nd Workshop on Algorithms in Bioinformatics(WABI) Rome, Italy, Lecture Notes in Computer Science 2452. Springer Verlag, pp 185–200
Duraipandiyan V, Al-Dhabi NA, Ignacimuthu S (2016) New antimicrobial anthraquinone 6,61-bis (1,5,7-trihydroxy-3 hydroxymethylanthraquinone) isolated from Streptomyces sp. isolate ERI-26. Saudi J Biol Sci 23(6):731–735. doi:10.1016/j.sjbs.2016.02.008
CAS
Article
Google Scholar
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376. doi:10.1007/BF01734359
CAS
Article
Google Scholar
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39(4):783–791. doi:10.2307/2408678
Article
Google Scholar
Groth I, Vettermann R, Schuetze B, Schumann P, Saiz-Jimenez C (1999) Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo). J Microbiol Methods 36(1–2):115–122. doi:10.1016/S0167-7012(99)00016-0
CAS
Article
Google Scholar
Groth I, Tan GY, González JM, Laiz L, Carlsohn MR et al (2007) Amycolatopsis nigrescens sp. nov., an actinomycete isolated from a Roman catacomb. Int J Syst Evol Microbiol 57(Pt 3):513–519. doi:10.1099/ijs.0.64602-0
CAS
Article
Google Scholar
Hazra S, Saha P, Ray J, Podder A (2010) Simple statistical and mineralogical studies as petrogenetic indicator for Neoproterozoic Mylliem porphyritic granites of East Khasi Hills, Meghalaya, Northeastern India. J Geol Soc India 75:760–768. doi:10.1007/s12594-010-0061-5
CAS
Article
Google Scholar
Holt JG (1994) Bergey’s manual of determinative bacteriology, 9th edn. Lippincott Williams and Wilkins, Baltimore
Google Scholar
Hong K, Gao AH, Xie QY, Gao H, Zhuang L et al (2009) Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. Mar Drugs 7(1):24–44. doi:10.3390/md7010024
CAS
Article
Google Scholar
Hong W, Zeng J, Xie J (2014) Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 4(4):258–265. doi:10.1016/j.apsb.2014.06.012
Article
Google Scholar
Hossain MI, Bhuiyan MMH (2009) Synthesis and antimicrobial activities of some new thieno and furopyrimidine derivatives. J Sci Res 1:317–325. doi:10.3329/jsr.v1i2.2299
CAS
Google Scholar
Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K (2012) Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot 65:355–359. doi:10.1038/ja.2012.30
CAS
Article
Google Scholar
Imamura K, Odagawa A, Tanabe K, Hayakawa Y, Otake N (1984) Akrobomycin, a new anthracycline antibiotic. J Antibiot 37:83–84. doi:10.7164/antibiotics.37.83
CAS
Article
Google Scholar
Ito Y (2005) Golden rules and pitfalls in selecting optimum conditions for high-speed counter current chromatography. J Chromatogr A 1065(2):145–168. doi:10.1016/j.chroma.2004.12.044
CAS
Article
Google Scholar
Karuppiah V, Li Y, Sun W, Feng G, Li Z (2015) Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea. Appl Microbiol Biotechnol 99(14):5939–5950. doi:10.1007/s00253-015-6547-8
CAS
Article
Google Scholar
Katritzky AR, Ji Y, Fang Y, Prakash I (2001) Novel syntheses of 2,3-disubstituted Benzofurans. J Org Chem 66:5613–5615. doi:10.1021/jo010278p
CAS
Article
Google Scholar
Katrusiak A, Katrusiak A, Bałoniak S (1994) Reactivity of 6-chloro-4- and 5-hydrazino-2-phenyl-3(2H)-pyridazinones with Vilsmeier reagent. Tetrahedron 50(45):12933–12940. doi:10.1016/S0040-4020(01)81212-6
CAS
Article
Google Scholar
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Foundation, Norwich
Google Scholar
Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120
CAS
Article
Google Scholar
Kimura T, Iwatsuki M, Asami Y, Ishiyama A, Hokari R et al (2016) Anti-trypanosomal compound, sagamilactam, a new polyene macrocyclic lactam from Actinomadura sp. K13-0306. J Antibiot 69(11):818–824. doi:10.1038/ja.2016.28
CAS
Article
Google Scholar
Kohanski MA, Dwyer DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8(6):423–435. doi:10.1038/nrmicro2333
CAS
Article
Google Scholar
Kotoda N, Shin-Ya K, Furihata K, Hayakawa Y, Seto H (1997) Isolation and structure elucidation of novel neuronal cell protecting substances, carbazomadurins A and B produced by Actinomadura madurae. J Antibiot 50:770–772. doi:10.7164/antibiotics.50.770
CAS
Article
Google Scholar
Kwon Y, Kim SH, Shin Y, Bae M, Kim BY, Lee SK et al (2014) A new benzofuran glycoside and indole alkaloids from a sponge-associated rare actinomycete, Amycolatopsis sp. Mar Drugs 12(4):2326–2340. doi:10.3390/md12042326
Article
Google Scholar
Landwehr W, Wolf C, Wink J (2016) Actinobacteria and myxobacteria - two of the most important bacterial resources for novel antibiotics. In: Stadler M, Dersch P (eds) How to overcome the antibiotic crisis, Springer, New York, pp 273–302
Chapter
Google Scholar
Lapchinskaya OA, Saburova TA, Ponomarenko VI, 1975. Production of carminomycin by auxotrophic mutants of Actinomadura carminata. J Basic Microbiol 15(5):383–385. doi:10.1002/jobm.19750150512
CAS
Google Scholar
Lee DW, Lee SD (2010) Actinomadura scrupuli sp. nov., isolated from rock. Int J Syst Evol Microbiol 60:2647–2651. doi:10.1099/ijs.0.017608-0
CAS
Article
Google Scholar
Lee JY, Moon SS, Hwang BK (2003) Isolation and antifungal and antioomycete activities of aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol 69(4):2023–2031. doi:10.1128/AEM.69.4.2023-2031.2003
CAS
Article
Google Scholar
Li S, Shi Y, Zhang Q, Liao X, Zhu L, Lou K (2013) Phylogenetic diversity of endolithic bacteria in Bole granite rock in Xinjiang. Acta Ecol Sin 33(4):178–184. doi:10.1016/j.chnaes.2013.05.003
Article
Google Scholar
Lima-Filho JVM, Carvalho AFFU, Freitas SM, Melo VMM (2002) Antibacterial activity of extracts of six macroalgae from the north eastern Brasilian coast. Braz J Microbiol 33:311–313. doi:10.1590/S1517-83822002000400006
Article
Google Scholar
Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36(Web Server Issue):W229–W232. doi:10.1093/nar/gkn186
CAS
Article
Google Scholar
Masuda M, Abe T, Sato S, Suzuki T, Suzuki M (1997) Diversity of halogenated secondary metabolites in the red alga Laurencia nipponica (Rhodomelaceae Ceramiales). J Phycol 33(2):196–208. doi:10.1111/j.0022-3646.1997.00196.x
CAS
Article
Google Scholar
McGuigan C, Brancale A, Barucki H, Srinivasan S, Jones G et al (2001) Furano pyrimidines as novel potent and selective anti-VZV agents. Antivir Chem Chemother 12(2):77–89. doi:10.1177/095632020101200201
CAS
Article
Google Scholar
McNamara CJ, Perry TD 4th, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51(1):51–64. doi:10.1007/s00248-005-0200-5
Article
Google Scholar
Mehra R, Rani C, Mahajan P, Vishwakarma RA, Khan IA, Nargotra A (2016) Computationally guided identification of novel Mycobacterium tuberculosis GlmU inhibitory leads, their optimization, and in vitro validation. ACS Comb Sci 18(2):100–116. doi:10.1021/acscombsci.5b00019
CAS
Article
Google Scholar
Michener CD, Sokal RR (1957) A quantitative approach to a problem in classification. Evol Int J Org Evol 11(2):130–162. doi:10.2307/2406046
Article
Google Scholar
Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade: a producing microorganisms approach. Actinomycetologica 9:100–106. doi:10.3209/saj.7_100
Article
Google Scholar
Mochalkin I, Lightle S, Zhu Y, Ohren JF, Spessard C et al (2007) Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci 16(12):2657–2666. doi:10.1110/ps.073135107
CAS
Article
Google Scholar
Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low earth orbit. Appl Environ Microbiol 76(7):2115–2121. doi:10.1128/AEM.02547-09
CAS
Article
Google Scholar
Palepu NR, Nongbri SL, Premkumar JR, Verma AK, Bhattacharjee K et al (2015) Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru(II), Rh(III) and Ir(III) as in vitro antitumor, antibacterial and fluorescence imaging agents. J Biol Inorg Chem 20(4):619–638. doi:10.1007/s00775-015-1249-3
CAS
Article
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. doi:10.1002/jcc.20084
CAS
Article
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. doi:10.1093/oxfordjournals.molbev.a040454
CAS
Google Scholar
Sayed GH, Sayed MA, Mahmoud MR, Shaaban SS (2002) Synthesis and reactions of new pyridazinone derivatives of expected antimicrobial activities. Egypt J Chem 45:767–776
CAS
Google Scholar
Schmitz A, Felder S, Hover T, Kehraus S, Neu E, Lohr F, Konig GM, Schaberle TF (2013) Antibiotics from gliding bacteria. Phytochem Rev 12:507. doi:10.1007/s11101-012-9224-x
CAS
Article
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33:W363-367. doi:10.1093/nar/gki481
Article
Google Scholar
Selvin J, Shanmughapriya S, Gandhimathi R, SeghalKiran G, RajeethaRavji T et al (2009) Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83(3):435–445. doi:10.1007/s00253-009-1878-y
CAS
Article
Google Scholar
Shirling EB, Gottlieb D (1966) Methods for Characterization of Streptomyces Species. Int J Syst Evol Microbiol 16:313–340. doi:10.1099/00207713-16-3-313
Google Scholar
Silver LL (2011) Challenges of antibacterial discovery. Clin Microbiol Rev 24(1):71–109. doi:10.1128/CMR.00030-10
CAS
Article
Google Scholar
Strauss DG, Baum M, Fleck WF (1986) Butylmaduramycin, a new antibiotic from Actinomadura rubra. J Basic Microbiol 26(3):169–172. doi:10.1002/jobm.3620260307
CAS
Article
Google Scholar
Tiwari K, Gupta RK (2012) Rare actinobacteria: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 32(2):108–132. doi:10.3109/07388551.2011.562482
CAS
Article
Google Scholar
Vaca I, Casqueiro J, Ullán RV, Rumbero A, Chávez R, Martín JF (2011) A preparative method for the purification of isopenicillin N from genetically blocked Acremonium chrysogenum strain TD189: studies on the degradation kinetics and storage conditions. J Antibiot 64:447–451. doi:10.1038/ja.2011.30
CAS
Article
Google Scholar
Vicens Q, Westhof E (2001) Crystal structure of paromomycin docked into the eubacterial ribosomal decoding A site. Structure 9(8):647–658. doi:10.1016/S0969-2126(01)00629-3
CAS
Article
Google Scholar
Vicens Q, Westhof E (2002) Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding a site. Chem Biol 9(6):747–755. doi:10.1016/S1074-5521(02)00153-9
CAS
Article
Google Scholar
Vicens Q, Westhof E (2003) Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol 326(4):1175–1188. doi:10.1016/S0022-2836(02)01435-3
CAS
Article
Google Scholar
Vithani N, Bais V, Prakash B (2014) GlmU (N-acetylglucosamine-1-phosphate uridyltransferase) bound to three magnesium ions and ATP at the active site. Acta Crystallogr F Struct Biol Commun 70(Pt 6):703–708. doi:10.1107/S2053230X14008279
CAS
Article
Google Scholar
Waitz JA, Horan AC, Kalyanpur M, Lee BK, Loebenberg D et al (1981) Kijanimicin (Sch 25663), a novel antibiotic produced by Actinomadura kijaniata SCC 1256, Fermentation, isolation, characterization and biological properties. J Antibiot 34(9):1101–1106. doi:10.7164/antibiotics.34.1101
CAS
Article
Google Scholar
Walker JJ, Pace NR (2007) Endolithic microbial ecosystems. Annu Rev Microbiol 61:331–347. doi:10.1146/annurev.micro.61.080706.093302
CAS
Article
Google Scholar
Walker JJ, Spear JR, Pace NR (2005) Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434:1011–1014. doi:10.1038/nature03447
CAS
Article
Google Scholar
Warren-Rhodes KA, Rhodes KL, Boyle LN, Pointing SB, Chen Y et al (2007) Lithic cyanobacterial ecology across environmental gradients and spatial scales in China’s hot and cold deserts. FEMS Microbiol Ecol 61(3):470–482. doi:10.1111/j.1574-6941.2007.00351.x
CAS
Article
Google Scholar
Weinstein GH, Wagman MJ (1984) Chromatography of antibiotics. Elsevier, Amsterdam
Google Scholar
Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175. doi:10.1038/nprot.2007.521
CAS
Article
Google Scholar
Wilson DN (2014) Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 12(1):35–48. doi:10.1038/nrmicro3155
CAS
Article
Google Scholar
Wilson ZE, Brimble MA (2009) Molecules derived from the extremes of life. Nat Prod Rep 26(1):44–71. doi:10.1039/B800164M
CAS
Article
Google Scholar
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668-72. doi:10.1093/nar/gkj067
Google Scholar
Wong FK, Lau MC, Lacap DC, Aitchison JC, Cowan DA, Pointing SB (2010) Endolithic microbial colonization of limestone in a high-altitude arid environment. Microb Ecol 59(4):689–699. doi:10.1007/s00248-009-9607-8
Article
Google Scholar
Zheng L, Chen H, Han X, Lin W, Yan X (2005) Antimicrobial screening and active compound isolation from marine bacterium NJ6-3-1 associated with the sponge Hymeniacidon perleve. World J Microbiol Biotechnol 21(2):201–206. doi:10.1007/s11274-004-3318-6
CAS
Article
Google Scholar
Ziervogel BK, Roux B (2013) The binding of antibiotics in OmpF porin. Structure 21(1):76–87. doi:10.1016/j.str.2012.10.014
CAS
Article
Google Scholar