Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile

  • Jeanett Vera
  • Marcelo H. Gutiérrez
  • Götz Palfner
  • Silvio Pantoja
Original Paper

Abstract

Our study reports the diversity of culturable mycoplankton in the eastern South Pacific Ocean off Chile to contribute with novel knowledge on taxonomy of filamentous fungi isolated from distinct physicochemical and biological marine environments. We characterized spatial distribution of isolates, evaluated their viability and assessed the influence of organic substrate availability on fungal development. Thirty-nine Operational Taxonomic Units were identified from 99 fungal strains isolated from coastal and oceanic waters by using Automatic Barcode Gap Discovery. All Operational Taxonomic Units belonged to phylum Ascomycota and orders Eurotiales, Dothideales, Sordariales and Hypocreales, mainly Penicillium sp. (82%); 11 sequences did not match existing species in GenBank, suggesting occurrence of novel fungal taxa. Our results suggest that fungal communities in the South Pacific Ocean off Chile appear to thrive in a wide range of environmental conditions in the ocean and that substrate availability may be a factor influencing fungal viability in the ocean.

Keywords

Ascomycota Eastern South Pacific Ocean Marine fungi Mycoplankton Penicillium 

Supplementary material

11274_2017_2321_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 KB)

References

  1. Alfaro M, Holder M (2006) The posterior and the prior in bayesian phylogenetics. Annu Rev Ecol Evol Syst 37:19–42. doi:10.1146/annurev.ecolsys.37.091305.110021 CrossRefGoogle Scholar
  2. Andreakis N, Høj L, Kearns P et al (2015) Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters. PLoS ONE 10:1–22. doi:10.1371/journal.pone.0136130 CrossRefGoogle Scholar
  3. Bass D, Howe A, Brown N, et al (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc Biol Sci R Soc 274:3069–3077. doi:10.1098/rspb.2007.1067 CrossRefGoogle Scholar
  4. Bosch A, Maronna RA, Yantorno OM (1995) A simple descriptive model of filamentous fungi spore germination. Process Biochem 30:599–606. doi:10.1016/0032-9592(94)00007-5 CrossRefGoogle Scholar
  5. Edgcomb VP, Beaudoin D, Gast R et al (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183. doi:10.1111/j.1462-2920.2010.02318.x CrossRefGoogle Scholar
  6. Frisvad J, Gravesen S (1994) Health implications of fungi in indoor environments, air quality monographs. In: Samson R, Flannigan B, Flannigan M, et al. (eds) Penicillium and Aspergillus from Danish homes and working places with indoor air problems: identification and mycotoxin determination, 1st edn. Pergamon Press, Amsterdam, pp 281–290Google Scholar
  7. Fuller MS, Poyton R (1964) A new technique for the isolation of aquatic fungi. Bioscience 14:45–46CrossRefGoogle Scholar
  8. Gao Z, Li B, Zheng C, Wang G (2008) Molecular detection of fungal communities in the hawaiian marine sponges Suberites zeteki and Mycale armata. Appl Environ Microbiol 74:6091–6101. doi:10.1128/AEM.01315-08 CrossRefGoogle Scholar
  9. Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120. doi:10.1038/ismej.2009.87 CrossRefGoogle Scholar
  10. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrihiza and rusts. Mol Ecol 2:113–118CrossRefGoogle Scholar
  11. Guindon S, Dufayard JF, Lefort V et al (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010 CrossRefGoogle Scholar
  12. Gutiérrez MH, Pantoja S, Quiñones RA, Gonzalez R (2010) First record of filamentous fungi in the coastal upwelling ecosystem off central Chile. Gayana 74:66–73Google Scholar
  13. Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219. doi:10.1007/s00227-010-1552-z CrossRefGoogle Scholar
  14. Gutiérrez MH, Galand PE, Moffat C, Pantoja S (2015) Melting glacier impacts community structure of Bacteria, Archaea and Fungi in a Chilean Patagonia fjord. Environ Microbiol 17:3882–3897. doi:10.1111/1462-2920.12872 CrossRefGoogle Scholar
  15. Gutiérrez MH, Jara AM, Pantoja S (2016) Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ Microbiol 18:1–24. doi:10.1111/1462-2920.13257 CrossRefGoogle Scholar
  16. Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud Mycol 70:1–51. doi:10.3114/sim.2011.70.01 CrossRefGoogle Scholar
  17. Houbraken J, Frisva J, Samson R (2011) Taxonomy of Penicillium section Citrina. Stud Mycol 70:53–158. doi:10.3114/sim.2011.70.02 CrossRefGoogle Scholar
  18. Irinyi L, Serena C, Garcia-Hermoso D et al (2015) International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol 53:313–337. doi:10.1093/mmy/myv008 CrossRefGoogle Scholar
  19. Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109. doi:10.1016/j.mycres.2008.08.009 CrossRefGoogle Scholar
  20. Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412. doi:10.1111/j.1574-6941.2009.00804.x CrossRefGoogle Scholar
  21. Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. Verland, New YorkGoogle Scholar
  22. Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54:343–354. doi:10.1515/BOT.2011.043 CrossRefGoogle Scholar
  23. Klaubauf S, Inselsbacher E, Zechmeister-Boltenstern S, et al (2010) Molecular diversity of fungal communities in agricultural soils from lower Austria. Fungal Divers 44:65–75. doi:10.1007/s13225-010-0053-1 CrossRefGoogle Scholar
  24. Kohlmeyer J, Kohlmeyer E (1979) Marine mycology: the higher fungi. Academic Press, New YorkGoogle Scholar
  25. Kurtzman CP, Fell JW (2006) Yeast systematics and phylogeny-implications of molecular identification methods for studies in ecology. In: Rosa C, Péter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 11–30CrossRefGoogle Scholar
  26. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26 S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371. doi:10.1023/A:1001761008817 CrossRefGoogle Scholar
  27. Lai X, Cao L, Tan H et al (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762. doi:10.1038/ismej.2007.51 CrossRefGoogle Scholar
  28. Landeweert R, Leeflang P, Kuyper TW et al (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333. doi:10.1128/AEM.69.1.327-333.2003 CrossRefGoogle Scholar
  29. Liu J, Wang J, Gao G et al (2015) Distribution and diversity of fungi in freshwater sediments on a river catchment scale. Front Microbiol 6:1–12. doi:10.3389/fmicb.2015.00329 Google Scholar
  30. Lyncht MDJ, Thorn RG (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056. doi:10.1128/AEM.00826-06 CrossRefGoogle Scholar
  31. Montecino V, Paredes MA, Paolini P, Rutllant J (2006) Revisiting chlorophyll data along the coast in north-central Chile, considering multiscale environmental variability. Rev Chil Hist Nat 79:213–223. doi:10.4067/S0717-71782002030100031 CrossRefGoogle Scholar
  32. Montero P, Daneri G, Cuevas LA et al (2007) Productivity cycles in the coastal upwelling area off Concepción: the importance of diatoms and bacterioplankton in the organic carbon flux. Prog Oceanogr 75:518–530. doi:10.1016/j.pocean.2007.08.013 CrossRefGoogle Scholar
  33. Morrison-Gardiner S (2002) Dominant fungi from Australian coral reefs. Fungal Divers 9:105–121Google Scholar
  34. Murphy WJ, Eizirik E, O’Brien SJ et al (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294:2348–2351. doi:10.1126/science.1067179 CrossRefGoogle Scholar
  35. Nagahama T, Hamamoto M, Nakase T et al (2003) Cryptococcus surugaensis sp. nov., a novel yeast species from sediment collected on the deep-sea floor of Suruga Bay. Int J Syst Evol Microbiol 53:2095–2098. doi:10.1099/ijs.0.02712-0 CrossRefGoogle Scholar
  36. Oren A, Gunde-Cimerman N (2012) Fungal life in the dead sea. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology, 1st edn. Springer, Berlin, pp 115–132Google Scholar
  37. Pang KL, Alias SA, Chiang MWL et al (2010) Sedecimiella taiwanensis gen. et sp. nov., a marine mangrove fungus in the Hypocreales (Hypocreomycetidae, Ascomycota). Bot Mar 53:493–498. doi:10.1515/BOT.2010.061 Google Scholar
  38. Pantoja S, Sepúlveda J, González HE (2004) Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile. Deep Sea Res Part 1 51:55–70. doi:10.1016/j.dsr.2003.09.005 CrossRefGoogle Scholar
  39. Pennington JT, Mahoney KL, Kuwahara VS et al (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69:285–317. doi:10.1016/j.pocean.2006.03.012 CrossRefGoogle Scholar
  40. Pitt J, Hocking A (2009) Fungi and food spoilage. Springer, LondonCrossRefGoogle Scholar
  41. Puillandre N, Lambert A, Brouillet S, Achaz G (2012) ABGD, automatic barcode gap discovery for primary species delimitation. Mol Ecol 21:1864–1877. doi:10.1111/j.1365-294X.2011.05239.x CrossRefGoogle Scholar
  42. Redberg GL, Hibbett DS, Ammirati JF, Rodriguez RJ (2003) Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences. Mycologia 95:836–845CrossRefGoogle Scholar
  43. Rodrigues A, Mueller UG, Ishak HD et al (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255. doi:10.1111/j.1574-6941.2011.01152.x CrossRefGoogle Scholar
  44. Ronquist F, Teslenko M, Van Der Mark P et al (2012) Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi:10.1093/sysbio/sys029 CrossRefGoogle Scholar
  45. Schlitzer R (2015) Ocean Data View. http://odv.awi.de.
  46. Schoch CL, Seifert KA, Huhndorf S, et al (2012) From the cover: nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci 109:6241–6246. doi:10.1073/pnas.1117018109 CrossRefGoogle Scholar
  47. Seifert K, Frisvad J (2000) Penicillium on solid wood products. In: Samson R, Pitt J (eds) Integration of modern taxonomic methods For Penicillium and Aspergillus classification. CRC Press, Amsterdam, pp 285–298Google Scholar
  48. Shoun H, Kim D-H, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–282. doi:10.1016/0378-1097(92)90643-3 CrossRefGoogle Scholar
  49. Sobarzo M, Shearman RK, Lentz S (2007) Near-inertial motions over the continental shelf off Concepción, central Chile. Prog Oceanogr 75:348–362. doi:10.1016/j.pocean.2007.08.021 CrossRefGoogle Scholar
  50. Summerbell RC, Gueidan C, Schroers HJ et al (2011) Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium. Stud Mycol 68:139–162. doi:10.3114/sim.2011.68.06 CrossRefGoogle Scholar
  51. Takami H, Inoue A, Fuji F, Horikoshi K (1997) Microbial flora in the deepest sea mud of the Mariana trench. FEMS Microbiol Lett 152:279–285. doi:10.1016/S0378-1097(97)00211-5 CrossRefGoogle Scholar
  52. Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169. doi:10.1007/s00792-005-0495-7 CrossRefGoogle Scholar
  53. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197 CrossRefGoogle Scholar
  54. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673 CrossRefGoogle Scholar
  55. Visagie CM, Houbraken J, Frisvad JC et al (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371. doi:10.1016/j.simyco.2014.09.001 CrossRefGoogle Scholar
  56. Wang G, Johnson ZI (2009) Impact of parasitic fungi on the diversity and functional ecology of marine phytoplankton. In: Kersey WT, Munger SP (eds) Marine Phytoplankton, 1st edn. Nova Science Publishers, pp 211–228Google Scholar
  57. Wang S, Li XM, Teuscher F et al (2006) Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J Nat Prod 69:1622–1625. doi:10.1021/np060248n CrossRefGoogle Scholar
  58. Wang G, Li Q, Zhu P (2008) Phylogenetic diversity of culturable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek 93:163–174. doi:10.1007/s10482-007-9190-2 CrossRefGoogle Scholar
  59. Wang G, Wang X, Liu X, Li Q (2012) Diversity and biogeochemical funtion of planktonic fungi in the ocean. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology. marine molecular biotechnology, 1st edn. Springer, Berlin, pp 71–88Google Scholar
  60. Wang X, Singh P, Gao Z et al (2014) Distribution and diversity of planktonic fungi in the west pacific warm pool. PLoS ONE 9:1–7. doi:10.1371/journal.pone.0101523 Google Scholar
  61. Wang XW, Lombard L, Groenewald JZ, et al (2016) Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 36:83–133. doi:10.3767/003158516X689657 CrossRefGoogle Scholar
  62. White TJ, Bruns S, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc 38:315–322Google Scholar
  63. Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371. doi:10.1016/S1055-7903(02)00244-0 CrossRefGoogle Scholar
  64. Zajc J, Zalar P, Plemenitas A, Gunde-Cimerman N (2012) The mycobiota of the Salterns. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology, 1st edn. Springer, Berlin, pp 133–158Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Jeanett Vera
    • 1
  • Marcelo H. Gutiérrez
    • 2
  • Götz Palfner
    • 3
  • Silvio Pantoja
    • 2
  1. 1.Graduate Program in Oceanography, Department of OceanographyUniversity of ConcepciónConcepciónChile
  2. 2.Department of Oceanography and COPAS Sur-AustralUniversity of ConcepciónConcepciónChile
  3. 3.Department of BotanyUniversity of ConcepciónConcepciónChile

Personalised recommendations