Skip to main content

Advertisement

Log in

Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production—the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acién FG, Gómez-Serrano C, Morales-Amaral M, Fernández-Sevilla J, Molina-Grima E (2016) Wastewater treatment using microalgae: how realistic a contribution might it be to significant urban wastewater treatment? Appl Microbiol Biotechnol 100:9013–9022

    Article  Google Scholar 

  • Araki S, Martın-Gomez S, Bécares E, De Luis-Calabuig E, Rojo-Vazquez F (2001) Effect of high-rate algal ponds on viability of Cryptosporidium parvum Oocysts. Appl Environ Microbiol 67:3322–3324

    Article  CAS  Google Scholar 

  • Arbib Z, Ruiz J, Álvarez-Díaz P, Garrido-Pérez C, Barragan J, Perales JA (2013) Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol Eng 52:143–153

    Article  Google Scholar 

  • Bahlaoui M, Baleux B, Troussellier M (1997) Dynamics of pollution-indicator and pathogenic bacteria in high-rate oxidation wastewater treatment ponds. Water Res 31:630–638

    Article  CAS  Google Scholar 

  • Banat I, Puskas K, Esen I, Al-Daher R (1990) Wastewater treatment and algal productivity in an integrated ponding system. Biol Wastes 32:265–275

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Buchanan AN (2014) Comparing the performance of a high rate algal pond with a waste stabilisation pond in rural South Australia. Flinders University, Adelaide

    Google Scholar 

  • Buchanan N, Cromar N, Bolton N, Fallowfield H (2011a) Comparison of a high rate algal pond with a ‘standard’secondary facultative waste stabilisation pond in rural South Australia. Paper presented at the international water association small sustainable solutions for water conference, Venice, 18th – 22nd April, 2011

  • Buchanan N, Cromar N, Bolton N, Fallowfield H (2011b) The disinfection performance of a high rate algal pond (hrap) at kingston-on-murray, South Australia. Paper presented at the International Water Association’s 9th specialist group conference on waste stabilisation ponds, Adelaide, South Australia, 1–3 August, 2011

  • Chen P, Zhou Q, Paing J, Le H, Picot B (2003) Nutrient removal by the integrated use of high rate algal ponds and macrophyte systems in China. Water Sci Technol 48:251–257

    CAS  Google Scholar 

  • Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291

    Article  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Craggs R, Davies-Colley R, Tanner C, Sukias J (2003a) Advanced pond system: performance with high rate ponds of different depths and areas. Water Sci Technol 48:259–267

    CAS  Google Scholar 

  • Craggs R, Tanner C, Sukias J, Davies-Colley R (2003b) Dairy farm wastewater treatment by an advanced pond system. Water Sci Technol 48:291–297

    CAS  Google Scholar 

  • Craggs RJ, Zwart A, Nagels JW, Davies-Colley RJ (2004) Modelling sunlight disinfection in a high rate pond. Ecol Eng 22:113–122

    Article  Google Scholar 

  • Craggs R, Heubeck S, Lundquist T, Benemann J (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63:660–665

    Article  CAS  Google Scholar 

  • Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337

    Article  CAS  Google Scholar 

  • Cromar N, Fallowfield HJ, Martin N (1996) Influence of environmental parameters on biomass production and nutrient removal in a high rate algal pond operated by continuous culture. Water Sci Technol 34:133–140

    Article  CAS  Google Scholar 

  • Davies-Colley R, Craggs R, Nagels J (2003) Disinfection in a pilot-scale advanced pond system (APS) for domestic sewage treatment in New Zealand. Water Sci Technol 48:81–87

    CAS  Google Scholar 

  • Davies-Colley R, Craggs R, Park J, Sukias J, Nagels J, Stott R (2005) Virus removal in a pilot-scale advanced pond system as indicated by somatic and F-RNA bacteriophages. Water Sci Technol 51:107–110

    CAS  Google Scholar 

  • de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2010) Influence of flue gas sparging on the performance of high rate algae ponds treating agro-industrial wastewaters. J Hazard Mater 179:1049–1054

    Article  Google Scholar 

  • de Godos I, Muñoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229:446–449

    Article  Google Scholar 

  • de Godos I, Arbib Z, Lara E, Rogalla F (2016) Evaluation of high rate algae ponds for treatment of anaerobically digested wastewater: effect of CO2 addition and modification of dilution rate. Bioresour Technol 220:253–261

    Article  Google Scholar 

  • DOE (2016) National Algal Biofuels Technology Review

  • Doma HS, El-Liethy MA, Abdo SM, Ali GH (2016) Potential of using high rate algal pond for algal biofuel production and wastewater treatment. Asian J Chem 28:399

    Article  CAS  Google Scholar 

  • Driver T, Bajhaiya A, Pittman JK (2014) Potential of bioenergy production from microalgae. Curr Sustain Renew Energy Rep 1:94–103

    Article  Google Scholar 

  • El Hafiane F, El Hamouri B (2005) Anaerobic reactor/high rate pond combined technology for sewage treatment in the Mediterranean area. Water Sci Technol 51:125–132

    CAS  Google Scholar 

  • El Hamouri B (2009) Rethinking natural, extensive systems for tertiary treatment purposes: the high-rate algae pond as an example. Desalin Water Treat 4:128–134

    Article  CAS  Google Scholar 

  • El Hamouri B, Khallayoune K, Bouzoubaa K, Rhallabi N, Chalabi M (1994) High-rate algal pond performances in faecal coliforms and helminth egg removals. Water Res 28:171–174

    Article  CAS  Google Scholar 

  • El Hamouri B et al (1995) The performance of a high-rate algal pond in the Moroccan climate. Water Sci Technol 31:67–74

    Article  Google Scholar 

  • El Hamouri B, Rami A, Vasel J (2003) The reasons behind the performance superiority of a high rate algal pond over three facultative ponds in series. Water Sci Technol 48:269–276

    CAS  Google Scholar 

  • Fallowfield H, Garrett M (1985a) The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agric Wastes 12:111–136

    Article  CAS  Google Scholar 

  • Fallowfield H, Garrett M (1985b) The treatment of wastes by algal culture. J Appl Bacteriol 59:187S-205S

    Article  Google Scholar 

  • Fallowfield HJ, Cromar N, Evison L (1996) Coliform die-off rate constants in a high rate algal pond and the effect of operational and environmental variables. Water Sci Technol 34:141–147

    Article  CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Garcia J, Green B, Lundquist T, Mujeriego R, Hernández-Mariné M, Oswald W (2006) Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresour Technol 97:1709–1715

    Article  CAS  Google Scholar 

  • García M, Soto F, González JM, Bécares E (2008) A comparison of bacterial removal efficiencies in constructed wetlands and algae-based systems. Ecol Eng 32:238–243

    Article  Google Scholar 

  • Green FB, Bernstone L, Lundquist T, Oswald W (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33:207–217

    CAS  Google Scholar 

  • Greenwell H, Laurens L, Shields R, Lovitt R, Flynn K (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface. doi:10.1098/rsif.2009.0322

    Google Scholar 

  • Gutiérrez R, Ferrer I, González-Molina A, Salvadó H, García J, Uggetti E (2016) Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds. Water Res 106:539–549

    Article  Google Scholar 

  • Heubeck S, Craggs R, Shilton A (2007) Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci Technol 55:193–200

    Article  CAS  Google Scholar 

  • Hwang J-H, Church J, Lee S-J, Park J, Lee WH (2016) Use of microalgae for advanced wastewater treatment and sustainable bioenergy generation. Environ Eng Sci 33:882–897

    Article  CAS  Google Scholar 

  • Jimenez B (2007) Helminths (Worms) eggs control in wastewater and sludge. In: International symposium on new directions in urban water management, pp. 12–14

  • Leu S, Boussiba S (2014) Advances in the production of high-value products by microalgae industrial. Biotechnology 10:169–183

    CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn N, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosci Inst 1:1–178

    Google Scholar 

  • Macrotrends (2017) Crude Oil Prices—70 Year Historical Chart. http://www.macrotrends.net/1369/crude-oil-price-history-chart.Accessed 14 January 2017

  • Manheim D, Nelson Y (2013) Settling and bioflocculation of two species of algae used in wastewater treatment and algae biomass production. Environ Prog Sustain Energy 32:946–954

    Article  CAS  Google Scholar 

  • Mara D, Hamilton A, Sleigh A, Karavarsamis N (2010) Discussion paper: options for updating the 2006 WHO guidelines WHO, FAO, IDRC, IWMI

  • Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42

    Article  CAS  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Bio/Technol 12:165–178

    Article  Google Scholar 

  • Munoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Muradov N et al (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8:24

    Article  Google Scholar 

  • Norvill ZN, Shilton A, Guieysse B (2016) Emerging contaminant degradation and removal in algal wastewater treatment ponds: identifying the research gaps. J Hazard Mater 313:291–309

    Article  CAS  Google Scholar 

  • Oswald W (1963) The high-rate pond in waste disposal. Dev Ind Microbiol 4:112–125

    CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  CAS  Google Scholar 

  • Oswald W, Gotaas H, Golueke C, Kellen W, Gloyna E, Hermann E (1957) Algae in waste treatment [with discussion]. Sew Ind Wastes 29:437–457

    Google Scholar 

  • Pahazri NF, Mohamed R, Al-Gheethi A, Kassim AHM (2016) Production and harvesting of microalgae biomass from wastewater: a critical review. Environ Technol Rev 5:39–56

    Article  Google Scholar 

  • Park J, Craggs R (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    Article  CAS  Google Scholar 

  • Park J, Craggs R (2011) Nutrient removal in wastewater treatment high rate algal ponds with carbon dioxide addition. Water Sci Technol 63:1758–1764

    Article  CAS  Google Scholar 

  • Park J, Craggs R (2014) Effect of algal recycling rate on the performance of Pediastrum boryanum dominated wastewater treatment high rate algal pond. Water Sci Technol 70:1299–1306

    Article  CAS  Google Scholar 

  • Park J, Craggs R, Shilton A (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Park J, Craggs R, Shilton A (2013) Enhancing biomass energy yield from pilot-scale high rate algal ponds with recycling. Water Res 47:4422–4432

    Article  CAS  Google Scholar 

  • Park JB, Craggs RJ, Shilton AN (2015) Algal recycling enhances algal productivity and settleability in Pediastrum boryanum pure cultures. Water Res 87:97–104

    Article  CAS  Google Scholar 

  • Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J (1991) Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Sci Technol 23:1535–1541

    CAS  Google Scholar 

  • Picot B, Bahlaoui A, Moersidik S, Baleux B, Bontoux J (1992) Comparison of the purifying efficiency of high rate algal pond with stabilization pond. Water Sci Technol 25:197–206

    CAS  Google Scholar 

  • Pinner D, Rogers M (2015) Solar power comes of age: how harassing the sun got cheap and practical. Foreign Aff 94:111

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rose P, Maart B, Dunn K, Rowswell R, Britz P (1996) High rate algal oxidation ponding for the treatment of tannery effluents. Water Sci Technol 33:219–227

    Article  CAS  Google Scholar 

  • Rose P, Boshoff G, Van Hille R, Wallace L, Dunn K, Duncan J (1998) An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation 9:247–257

    Article  CAS  Google Scholar 

  • Sahoo D, Seckbach J (2015) The algae world, vol 26, Springer, Netherlands

    Google Scholar 

  • Shelef G, Azov Y (1987) High-rate oxidation ponds: the Israeli experience. Water Sci Technol 19:249–255

    CAS  Google Scholar 

  • Shelef G, Azov Y, Moraine R (1982) Nutrients removal and recovery in a two-stage high-rate algal wastewater treatment system. Water Sci Technol 14:87–100

    Google Scholar 

  • Shilton A, Mara D, Craggs R, Powell N (2008) Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds. Water Sci Technol 58:253

    Article  CAS  Google Scholar 

  • Shoener B, Bradley I, Cusick R, Guest J (2014) Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environ Sci Process Impacts 16:1204–1222

    Article  CAS  Google Scholar 

  • Shukla SK, Thanikal JV, Haouech L, Patil SG, Kumar V (2017) Critical evaluation of algal biofuel production processes using wastewater. In: Algal biofuels. Springer, pp 189–225

  • Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ (2014a) Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high-rate algal pond. J Appl Phycol 26:1317–1329

    Article  CAS  Google Scholar 

  • Sutherland DL, Turnbull MH, Craggs RJ (2014b) Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds. Water Res 53:271–281

    Article  CAS  Google Scholar 

  • Sutherland DL, Howard-Williams C, Turnbull MH, Broady PA, Craggs RJ (2015) Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 184:222–229

    Article  CAS  Google Scholar 

  • Toumi A, Nejmeddine A, El Hamouri B (2000) Heavy metal removal in waste stabilisation ponds and high rate ponds. Water Sci Technol 42:17–21

    CAS  Google Scholar 

  • Van Den Hende S, Vervaeren H, Desmet S, Boon N (2011) Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol 29:23–31

    Article  Google Scholar 

  • Vandamme D, Foubert I, Muylaert K (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnol 31:233–239

    Article  CAS  Google Scholar 

  • WHO (2006) Guidelines for the safe use of wastewater, excreta and greywater, volume 2: wastewater use in agriculture. WHO, Geneva

    Google Scholar 

  • Woertz I, Fulton L, Lundquist T (2009) Nutrient removal & greenhouse gas abatement with CO2 supplemented algal high rate ponds. Proc Water Environ Fed 2009:7924–7936

    Article  Google Scholar 

  • Wood A, Scheepers J, Hills M (1989) Combined artificial wetland and high rate algal pond for wastewater treatment and protein production. Water Sci Technol 21:659–668

    CAS  Google Scholar 

  • Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS, Mouradov A (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PloS ONE 9:e113497

    Article  Google Scholar 

  • Young P, Buchanan N, Fallowfield H (2016) Inactivation of indicator organisms in wastewater treated by a high rate algal pond system. J Appl Microbiol 121:577–586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, P., Taylor, M. & Fallowfield, H.J. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment. World J Microbiol Biotechnol 33, 117 (2017). https://doi.org/10.1007/s11274-017-2282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2282-x

Keywords