Hydrogen production profiles using furans in microbial electrolysis cells

Abstract

Microbial electrochemical cells including microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are novel biotechnological tools that can convert organic substances in wastewater or biomass into electricity or hydrogen. Electroactive microbial biofilms used in this technology have ability to transfer electrons from organic compounds to anodes. Evaluation of biofilm formation on anode is crucial for enhancing our understanding of hydrogen generation in terms of substrate utilization by microorganisms. In this study, furfural and hydroxymethylfurfural (HMF) were analyzed for hydrogen generation using single chamber membrane-free MECs (17 mL), and anode biofilms were also examined. MECs were inoculated with mixed bacterial culture enriched using chloroethane sulphonate. Hydrogen was succesfully produced in the presence of HMF, but not furfural. MECs generated similar current densities (5.9 and 6 mA/cm2 furfural and HMF, respectively). Biofilm samples obtained on the 24th and 40th day of cultivation using aromatic compounds were evaluated by using epi-fluorescent microscope. Our results show a correlation between biofilm density and hydrogen generation in single chamber MECs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bellucci M, Botticella G, Francavilla M, Beneduce L (2016) Inoculum pre-treatment affects the fermentative activity of hydrogen-producing communities in the presence of 5-hydroxymethylfurfural. Appl Microbiol Biotechnol 100(1):493–504

    CAS  Article  Google Scholar 

  2. Bermek H, Catal T, Akan SS, Ulutaş MS, Kumru M, Özgüven M, Liu H, Özçelik B, Akarsubaşı AT (2013) Olive mill wastewater treatment in microbial fuel cells. World J Microbiol Biotechnol 30(4):1177–1185

    Article  Google Scholar 

  3. Cary R, Dobson S., Gregg N (2000) Concise International Chemical Assessment Document 21, World Health Organization Geneva, 2-furaldehyde.

  4. Catal T (2016) Comparison of various carbohydrates for hydrogen production in microbial electrolysis cells. Biotechnol Biotechnol Equip 30:75–80

    CAS  Article  Google Scholar 

  5. Catal T, Fan Y, Li K, Bermek H, Liu H (2008) Effects of furan derivatives and phenolic compounds on electricity generation in microbial fuel cells. J Power Sour 180:162–166

    CAS  Article  Google Scholar 

  6. Catal T, Kavanagh P, O’Flaherty V, Leech D (2010) Generation of electricity in microbial fuel cells at sub-ambient temperatures. J Power Sour 196:2676–2681

    Article  Google Scholar 

  7. Catal T, Cysneiros D, O’Flaherty V, Leech D (2011) Electricity generation in single-chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresour Technol 102:404–410

    CAS  Article  Google Scholar 

  8. Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single-chamber microbial electrolysis cells using various antibiotics. Bioresour Technol 87:77–83

    Article  Google Scholar 

  9. Cruz AG, Scullin C, Mu C, Cheng G, Stavila V, Varanasi P, Singh S (2013) Impact of high biomass loading on ionic liquid pretreatment. Biotechnol Biofuels 6(1):52. doi:10.1186/1754-6834-6-52

    CAS  Article  Google Scholar 

  10. Fan S, Hou C, Liang B, Feng R, Liu A (2015) Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy. Bioresour Technol 192:821–825

    CAS  Article  Google Scholar 

  11. Glebes TY, Sandoval NR, Reeder PJ, Schilling KD, Zhang M, Gill RT, Sandler SJ (2014) Genome-wide mapping of furfural tolerance genes in Escherichia coli. PLoS ONE 9(1):e87540

    Article  Google Scholar 

  12. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH (2008) The biofine process—production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks. Biorefineries-Industrial Processes and Products 1: 139–164

    Google Scholar 

  13. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    CAS  Article  Google Scholar 

  14. Khan QA, Hadi SM (1994) Inactivation and repair of bacteriophage lambda by furfural. Biochem Mol Biol Int 32:379–385

    CAS  Google Scholar 

  15. Kumru M, Eren H, Catal T, Akarsubaşı AT, Bermek H (2012) Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells. Environ Technol 33:2167–2175

    CAS  Article  Google Scholar 

  16. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151–159

    CAS  Article  Google Scholar 

  17. Lin R, Cheng J, Ding L, Song W, Zhou J, Cen K (2015) Inhibitory effects of furan derivatives and phenolic compounds on darkhydrogen fermentation. Bioresour Technol 196:250–255

    CAS  Article  Google Scholar 

  18. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  19. Reguera G, Pollina RB, Nicoll JS, Lovley DR (2007) Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriol 189:2125–2127

    CAS  Article  Google Scholar 

  20. Román-Leshkov Y, Barrett CJ, Liu ZY, Dumesic JA (2007) Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 447:982–985

    Article  Google Scholar 

  21. Seo HM, Jeon JM, Lee JH, Song HS, Joo HB, Park SH, Choi KY, Kim YH, Park K, Ahn J, Lee H, Yang YH (2016) Combinatorial application of two aldehyde oxidoreductases on isobutanol production in the presence of furfural. J Ind Microbiol Biotechnol 43(1):37–44

    CAS  Article  Google Scholar 

  22. Sreelatha S, Velvizhi G, Naresh Kumar A, Venkata Mohan S (2016) Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: synergistic interactions of biocatalyst and electrode assembly. Bioresour Technol. doi:10.1016/j.biortech.2016.03.087

    Google Scholar 

  23. van der Pol EC, Vaessen E, Weusthuis RA, Eggink G (2016) Identifying inhibitory effects of lignocellulosic by-products on growth of lactic acid producing micro-organisms using a rapid small-scale screening method. Bioresour Technol 209:297–304

    Article  Google Scholar 

  24. Wang P, Brenchley J, Humphrey A (1994) Screening microorganisms for utilization of furfural and possible intermediates in its degradation pathway. Biotechnol Lett 16:977–982

    CAS  Article  Google Scholar 

  25. Wang R, Unrean P, Franzén CJ (2016) Model-based optimization and scale-up of multi-feed simultaneous saccharification and co-fermentation of steam pre-treated lignocellulose enables high gravity ethanol production. Biotechnol Biofuels 9:88. doi:10.1186/s13068-016-0500-7

    Article  Google Scholar 

  26. White GF, Edwards MJ, Gomez-Perez L, Richardson DJ, Butt JN, Clarke TA (2016) Mechanisms of bacterial extracellular electron exchange. Adv Microb Physiol 68:87–138

    CAS  Article  Google Scholar 

  27. Wilson EL, Kim Y (2016) The yield and decay coefficients of exoelectrogenic bacteria in bioelectrochemical systems. Water Res 94:233–239

    CAS  Article  Google Scholar 

  28. Xing R, Subrahmanyam AV, Olcay H, Qi W, van Walsum GP, Pendse H, Huber GW (2010) Production of jet and diesel fuel range alkanes from waste hemicellulose-derived aqueous solutions. Green Chem 12:1933–1946

    CAS  Article  Google Scholar 

  29. Yamashita T, Ishida M, Asakawa S, Kanamori H, Sasaki H, Ogino A, Katayose Y, Hatta T, Yokoyama H (2016) Enhanced electrical power generation using flame-oxidized stainless steel anode in microbial fuel cells and the anodic community structure. Biotechnol Biofuels 9:62. doi:10.1186/s13068-016-0480-7.

    Article  Google Scholar 

  30. Yang Y, Xu M, He Z, Guo J, Sun G, Zhou J (2013) Microbial electricity generation enhances decabromodiphenyl ether (BDE-209) degradation. PLoS ONE 8(8):e70686. doi:10.1371/journal.pone.0070686

    CAS  Article  Google Scholar 

  31. Zheng D, Bao J, Lu J, Lv Q (2015) Biodegradation of furfural by Bacillus subtilis strain DS3. J Environ Biol 36:727–732

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Grant No. 113Z589).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tunc Catal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Catal, T., Gover, T., Yaman, B. et al. Hydrogen production profiles using furans in microbial electrolysis cells. World J Microbiol Biotechnol 33, 115 (2017). https://doi.org/10.1007/s11274-017-2270-1

Download citation

Keywords

  • Aromatic compounds
  • Biofilm
  • Electricity
  • Hydrogen