Skip to main content
Log in

Hexavalent chromium bioreduction and chemical precipitation of sulphate as a treatment of site-specific fly ash leachates

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Most of the power generation globally is by coal-fired power plants resulting in large stockpiles of fly ash. The trace elements associated with the ash particles are subjected to the leaching effects of precipitation which may lead to the subsequent contamination of surface and groundwater systems. In this study, we successfully demonstrate an efficient and sustainable dual treatment remediation strategy for the removal of high levels of Cr6+ and SO4 2− introduced by fly ash leachate generated by a power station situation in Mpumalanga, South Africa. The treatment consisted of a primary fixed-bed bioreactor kept at a reduction potential for Cr6+ reduction. Metagenome sequencing clearly indicated a diverse bacterial community containing various bacteria, predominantly of the phylum Proteobacteria which includes numerous species known for their ability to detoxify metals such as Cr6+. This was followed by a secondary BaCO3/dispersed alkaline substrate column for SO4 2− removal. The combination of these two systems resulted in the removal of 99% Cr6+ and 90% SO4 2−. This is the first effective demonstration of an integrated system combining a biological and chemical strategy for the remediation of multi-contaminants present in fly ash leachate in South Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akinyemi SA, Akinlua A, Gitari WM, Nyale SM, Akinyeye RO, Petrik LF (2012) An investigative study on the chemical, morphological and mineralogical alterations of dry disposed fly ash during sequential chemical extraction. Energ Sci Tech 3(1):28–37

    CAS  Google Scholar 

  • Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems version 3.0 user’s manual. Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency, EPA/600/3-911021, Athens

    Google Scholar 

  • Amoosegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. Strain MF2. Proc Biochem 42:1475–1479

    Article  Google Scholar 

  • Arias YM, Tebo BM (2003) Cr(VI) reduction by sulfidogenic and nonsulfidogenic microbial consortia. Appl Environ Microbiol 69:1847–1853

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Michel C, Joulian C, Ollivier B, Ignatiadis B (2007) Relationship Between sulphate starvation and chromate reduction in a H2-fed fixed-film bioreactor. Water Air Soil Pollut 183:341

    Article  CAS  Google Scholar 

  • Bernardez LA, de Andrade Lima LRP, Ramos CLS, Almeida PF (2012) A kinetic analysis of microbial sulfate reduction in an upflow packed-bed anaerobic bioreactor. Mine Water Environ 31:62–68

    Article  CAS  Google Scholar 

  • Camargo FA, Bento FM, Okeke BC, Frankenberger WT (2004) Hexavalent chromium reduction by an actinomycete, Arthrobacter crystallopoietes ES 32. Biol Trace Elem Res 97:183–194

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  Google Scholar 

  • Castillo J, Gomez-Arias A, Posthumus J, Welman-Purchase M, Van Heerden E (2015) Geochemical study of the interaction of acid and alkaline mine drainage with BaCO3. Proceedings of the 10th international conference on Acid Rock Drainage & IMWA annual conference, Paper 290

  • Cervantes C, Campos-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  Google Scholar 

  • Choi SK, Lee S, Song YK, Moon HS (2002) Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash mound. Fuel 81:1083–1090

    Article  CAS  Google Scholar 

  • Daulton TL, Little BJ, Lowe K, Jones-Meehan J (2002) Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. J Microbiol Methods 50:39–54

    Article  CAS  Google Scholar 

  • DeLaune RD, Reddy KR (2005) Redox potential. In: Hillel D (ed) Encyclopaedia of soils in the environment. Academic, New York, pp 366–371

    Chapter  Google Scholar 

  • Department of Water Affairs and Forestry (1996) South African water quality guidelines, 2nd Edition, Vol 5 Agricultural Use: Livestock Watering.

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Haz Mat 250–251:272–291

    Article  Google Scholar 

  • Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14:1298–1309

    Article  CAS  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    Article  CAS  Google Scholar 

  • Edwards JS, Palsson BO (2000) Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1:1

    Article  CAS  Google Scholar 

  • Environmental Protection Agency (2006) Drinking water contaminants. https://www.epa.gov/safewater/mcl.html

  • Environmental Protection Agency (2014) Fact sheet: final rule on coal combustion residuals generated by electric utilities. https://www.epa.gov/sites/production/files/2014-12/documents/factsheet_ccrfinal_2.pdf

  • Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843

    Article  CAS  Google Scholar 

  • Gomez-Arias A, Castillo J, Welman-Purchase M, Posthumus J, Van Heerden E (2015) Evidences of effective treatment of alkaline mine drainage with BaCO3. Proceedings of the 10th international conference on Acid Rock Drainage & IMWA annual conference, Paper 303

  • Heidrich C, Feuerborn HJ, Weir A (2013) Coal combustion products: a Global perspective. Proceedings of the World of Coal Ash (WOCA) conference, April 22–25, Lexington. http://www.flyash.info/

  • Hlabela P, Marree J, Bruinsma D (2007) Barium carbonate process for sulphate and metal removal from mine water. Mine Wat Environ 26: 14–22

    Article  CAS  Google Scholar 

  • Hodgson F (1999) Groundwater quality and pollution plume modelling at Tutuka Power Station. Eskom internal document 280499.

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bact 187:8437–8449

    Article  CAS  Google Scholar 

  • INAP, International Network for Acid Prevention (2003) Treatment of sulphate in mine effluents. Technical report. http://www.inap.com.au/public_downloads/Research_Projects/Treatment_of_Sulphate_in_Mine_Effluents_-Lorax_Report.pdf

  • Izquierdo M, Querol X (2012) Leaching behaviour of elements from coal combustion fly ash: an overview. Int J Coal Geol 94:54–66

    Article  CAS  Google Scholar 

  • Joutey NT, Sayel H, Bahafid W, El Ghachtouli N (2015) Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol 233:45–69

    CAS  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1

    Article  CAS  Google Scholar 

  • Lopez O (2009). La tecnologia de reducción de sulfato Sulf-IX permite la recuperación o disposición de aguas industriales cumpliendo la normative vigente, vol 98. InduAmbiente, Chile (in spanish)

    Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Lu Z, An X, Zhang W (2011) Isolation and phylogenetic analysis of chromium(VI) reducing bacteria of a magnetite mine drainage from Hebei China. Mod Appl Sci 5:113–118

    Article  CAS  Google Scholar 

  • Mangaiyarkarasi A, Geetharamani D (2014) Bio absorption of chromium employing microorganism isolated from tannery effluent. SIRJ-BES 1:29–36

    Google Scholar 

  • Maree JP, Strydom WF (1987) Biological sulphate removal from industrial effluent in a upflow packed bed reactor. Water Res 21:141–146

    Article  CAS  Google Scholar 

  • Maree JP, Bosman DJ, Jenkins GR (1989) Chemical removal of sulphate, calcium and heavy metals from mining and power station effluents. Wat Sew Effl 9:10–25

    Google Scholar 

  • McLean JS, Beveridge TJ, Phipps D (2000) Isolation and characterization of chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environ Microbiol 2:611–619

    Article  CAS  Google Scholar 

  • Musingarimi W, Tuffin M, Cowan D (2010) Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash-acid mine drainage neutralized solids. SA J Sci 106:59–63

    CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nepple BB, Kessi J, Bachofen R (2000) Chromate reduction by Rhodobacter sphaeroides. J Ind Microbiol Biotech 25:198–203

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159

    Article  CAS  Google Scholar 

  • Nguema PF, Luo (2012) Aerobic chromium(VI) reduction by chromium-resistant bacteria isolated from activated sludge. Ann Microbiol 62:41

    Article  CAS  Google Scholar 

  • Opperman DJ, Van Heerden E (2007) Aerobic Cr(VI) reduction by Thermus scotoductus strain SA01. J Appl Microbiol 103:1907–1913

    Article  CAS  Google Scholar 

  • Ozturk S, Kaya T, Aslim B, Tan S (2012) Removal and reduction of chromium by Pseudomonas spp. and their correlation to rhamnolipid production. J Haz Mat 231–232:64–69

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (2005) PHREEQC-2 version 2.12: a hydrochemical transport model. http://www.brr.cr.usgs.gov

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI)-contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  CAS  Google Scholar 

  • Paul D, Kazy SK, Gupta AK, Pal T, Sar P (2015) Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS ONE 10(3):e0118735

    Article  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41(D1):D590–D596

    Article  Google Scholar 

  • Sánchez O, Gasol JM, Massana R, Mas J, Pedrós-Alió C (2007) Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol 73(18):5962–5967

    Article  Google Scholar 

  • Sani RK, Peyton BM, Smith WA, Apel WA, Petersen JN (2002) Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates. Appl Microbiol Biotechnol 60:192–199

    Article  CAS  Google Scholar 

  • Sarode DB, Jadhav RN, Khatik VA, Ingle ST, Attarde SB (2010) Extraction and leaching of heavy metals from thermal power plant fly ash and its admixtures. Pol J Environ Stud 19(6):1325–1330

    CAS  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and pre-processing of metagenomic datasets. Bioinformatics 27:863–864

    Article  CAS  Google Scholar 

  • Sedláček V, Kučera I (2010) Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Arch Microbiol 192:919–926

    Article  Google Scholar 

  • Silva R, Cadorin L, Rubio J (2010) Sulphate ions removal from an aqueous solution: I. Co-precipitation with hydrolysed aluminum-bearing salts. Miner Eng 23:1220–1226

    Article  CAS  Google Scholar 

  • Thacker U, Parikh R, Shouche Y, Madamwar D (2006) Hexavalent chromium reduction by Providencia sp. Proc Biochem 41:1332–1337

    Article  CAS  Google Scholar 

  • Trusler GE, Edwards RI, Brouckaert CJ, Buckley CA (1988) The chemical removal of sulphates. Proceedings of the 5th national meeting of the South African institution of chemical engineers, Pretoria, W3-0-W3-11.

  • Urone PF (1955) Stability of colorimetric reagent for chromium, s-Diphenylcarbazide, in various solvents. Anal Chem 27(8):1354–1355

    Article  CAS  Google Scholar 

  • US Energy Information Administration (2016) International energy outlook 2016. DOE/EIA 0484 Report. http://www.eia.gov/forecasts/ieo/pdf/0484(2016).pdf

  • Viti C, Giovannetti L (2001) The impact of chromium contamination on soil heterotrophic and photosynthetic microorganisms. Ann Microbiol 51:201–213

    CAS  Google Scholar 

  • Viti C, Pace A, Giovannetti L (2003) Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Curr Microbiol 46:1–5

    Article  CAS  Google Scholar 

  • Williams PJ, Botes E, Maleke MM, Ojo A, DeFlaun MF, Howell J, Borch R, Jordan R, Van Heerden E (2014) Effective bioreduction of hexavalent chromium-contaminated water in fixed-film bioreactors. Water SA 40:549–554

    Article  CAS  Google Scholar 

  • Zhang J, Kobert K, Flouri T, Stamatakis A (2014) PEAR: a fast and accurate Illumina Paired-End read merger. Bioinformatics 30:614–620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with financial support from the TIA/UFS SAENSE Platform and Eskom Holdings (Pty) Ltd. We would like to thank Mr Fanie Riekert at the High Performance Computing Unit (HPC), University of the Free State, for access to the HPC and help in setting up the required software for diversity analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esta van Heerden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cason, E.D., Williams, P.J., Ojo, E. et al. Hexavalent chromium bioreduction and chemical precipitation of sulphate as a treatment of site-specific fly ash leachates. World J Microbiol Biotechnol 33, 88 (2017). https://doi.org/10.1007/s11274-017-2243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2243-4

Keywords

Navigation