Analysis of microbiota involved in the aged natural fermentation of indigo

  • Takahiro Okamoto
  • Kenichi Aino
  • Takashi Narihiro
  • Hidetoshi Matsuyama
  • Isao Yumoto
Original Paper

Abstract

Although the indigo reduction process is performed via natural fermentation and maintained under open-air condition, the indigo-reducing reactions continue for 6 months (on average) or longer. Identifying the mechanism underlying the maintenance of this process could lead to the development of a novel, long-lasting, unsterilized bioprocesses. To determine the mechanisms underlying the maintenance of the indigo fermentation system microbiota for more than 6 months in a reduced state in an anaerobic alkaline environment, we examined changes in the microbiota in one early-phase batch and two aged batches of indigo fermentation fluid. The microbiota in the aged fermentation fluid consisted mainly of the genera Alkalibacterium, Amphibacillus, Anaerobacillus and Polygonibacillus and the family Proteinivoraceae. The genera Alkalibacterium, Amphibacillus and Polygonibacillus are known to include indigo-reducing bacteria. Although the transition speed was slower in the aged fermentation fluid than in the early-stage fluid, the microbiota in the aged fermentation fluid maintained for more than 6 months was drastically changed within a period of 3 months. The results of this study indicate that the bacterial consortia consisted of various indigo-reducing species that replace the previous group of indigo-reducing bacteria. The notable transitional changes may be concomitant with changes in the environmental conditions, such as the nutritional conditions, observed over 3 months. This flexibility may lead to important changes in the microbiota that allow for the maintenance of a fermentation-reducing state over a long period.

Keywords

Alkalibacterium Alkaliphile Amphibacillus Anaerobacillus Indigo fermentation 

Supplementary material

11274_2017_2238_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 57 KB)

References

  1. Aino K, Narihiro T, Minamida K, Kamagata Y, Yoshimune K, Yumoto I (2010) Bacterial community characterization and dynamics of indigo fermentation. FEMS Microbiol Ecol 74:174–183CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefGoogle Scholar
  4. Clark RJH, Cooksey CJ, Daniels MAM, Withnall R (1993) Indigo, woad, and Tyrian purple: important vat dyes from antiquity to the present. Endeavour 17:191–199CrossRefGoogle Scholar
  5. Edger RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefGoogle Scholar
  6. Farrow JAE, Lawson PA, Hippe H, Gauglitz U, Collins MD (1995) Phylogenetic evidence that the gram-negative nonsporulating bacterium Tissierella (Bacteroides) praeacuta is a member of the Clostridium subphylum of the gram-positive bacteria and description of Tissierella creatinini sp. nov. Int J Syst Bacteriol 45:436–440CrossRefGoogle Scholar
  7. Felsentein J (1985) Confidence limits on phylogenies: an approach using phylogenies: an approach using the bootstrap. Evol Int J org Evol 39:783–791CrossRefGoogle Scholar
  8. Fuller SJ, McMillan DGG, Renz MB, Schmidt M, Burke IT, Stewart DI (2014) Extracellular electron transport-mediated Fe(III) reduction by a community of alkaliphilic bacteria that use flavins as electron shuttle. Appl Environ Microbiol 80:128–137CrossRefGoogle Scholar
  9. Guindon S, Gascuel O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  10. Hirota K, Aino K, Nodasaka Y, Morita N, Yumoto I (2013a) Amphibacillus indicireducens sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:464–469CrossRefGoogle Scholar
  11. Hirota K, Aino K, Nodasaka Y, Yumoto I (2013b) Oceanobacillus indicireducens sp. nov., a facultatively alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:1437–1442CrossRefGoogle Scholar
  12. Hirota K, Aino K, Yumoto I (2013c) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308CrossRefGoogle Scholar
  13. Hirota K, Aino K, Yumoto I (2016a) Fermentibacillus polygoni gen. nov., sp. nov., an alkaliphile that reduces indigo dye. Int J Syst Evol Microbiol 66:2247–2253CrossRefGoogle Scholar
  14. Hirota K, Okamoto T, Matsuyama H, Yumoto I (2016b) Polygonibacillus indicireducensgen, nov., sp. nov., an indigo-reducing and obligate alkaliphile isolated from indigo fermentation liquor for dyeing. Int J Syst Evol Microbiol. doi:10.1099/ijsem.0.001015 Google Scholar
  15. Hobbie SN, Li X, Basen M, Stingl U, Brune A (2012) Humic substance-mediated Fe(III) reduction by a fermenting Bacillus strain from the alkaline gut of a humus-feeding scarab beetle larva. Syst Appl Microbiol 35:226–232CrossRefGoogle Scholar
  16. Kamagata Y (2015) Keys to cultivating uncultured microbes: elaborate enrichment strategies and resuscitation of dormant cells. Microb Environ 30:289–290CrossRefGoogle Scholar
  17. Kevbrin V, Boltyanskaya Y, Zhilina T, Kolganova T, Lavrentjeva E, Kuznetsov B (2013) Proteinivorax tanatarense gen. nov., sp. nov., an anaerobic, haloalkaliphilic, proteolytic bacterium isolated from a decaying algal bloom, and proposal of Proteinivoraceae fam. nov. Extremophiles 17:747–756CrossRefGoogle Scholar
  18. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  19. Lucena-Padrós H, Ruiz-Barba JL (2016) Diversity and enumeration of halophilic and alkaliphilic bacteria in Spanish-style green table-olive fermentations. Food Microbiol 53:53–62CrossRefGoogle Scholar
  20. Mori K, Kamagata Y (2014) The challenges of studying the anaerobic microbial world. Microb Environ 29:335–337CrossRefGoogle Scholar
  21. Nakajima K, Hirota K, Nodasaka Y, Yumoto I (2005) Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 55:1525–1530CrossRefGoogle Scholar
  22. Narihiro T, Kamagata Y (2013) Cultivating yet-to-be cultivated microbes: the challenge continues. Microb Environ 28:163–165CrossRefGoogle Scholar
  23. Ono H, Nishio S, Tsurii J, Kawamoto T, Sonomoto K, Nakayama J (2014) Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables. J Bioci Bioeng 118:520–525CrossRefGoogle Scholar
  24. Padden AN, Dillon VM, John P, Edmonds J, Collins MD, Alvarez N (1998) Clostridium used in medieval dyeing. Nature 396:225CrossRefGoogle Scholar
  25. Padden AN, Dillon VM, Edmonds J, Collins MD, Alvarez N, John P (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031CrossRefGoogle Scholar
  26. Roth E, Schwenninger SM, Eugster-Meier E, Lacroix C (2011) Facultative anaerobic halophilic and alkaliphilic bacteria isolated from a natural smear ecosystem inhibit Listeria growth in early ripening stages. Int J Food Microbiol 147:26–32CrossRefGoogle Scholar
  27. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  28. Schmidt H (1997) Indigo—100 Jahre industrielle synthese. Chem Uns Zeit 31:121–128CrossRefGoogle Scholar
  29. Takahara Y, Tanabe O (1960) Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38:329–331Google Scholar
  30. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetic analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  31. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680CrossRefGoogle Scholar
  32. Tiago I, Pires C, Mendes V, Morais PV, da Costa MS, Veríssimo A (2006) Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 56:2571–2574CrossRefGoogle Scholar
  33. Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. GigaScience 2:16CrossRefGoogle Scholar
  34. Wei Q, Wang H, Chen Z, Lv Z, Xie Y, Lu F (2013) Profiling of dynamic changes in the microbial community during the soy sauce fermentation process. Appl Microbiol Biotechnol 97:9111–9119CrossRefGoogle Scholar
  35. Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383CrossRefGoogle Scholar
  36. Yumoto I, Hirota K, Nodasaka Y, Tokiwa Y, Nakajima K (2008) Alkalibacterium indicireducens sp. nov., an obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 58:901–905CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Takahiro Okamoto
    • 1
    • 2
  • Kenichi Aino
    • 1
    • 3
  • Takashi Narihiro
    • 4
  • Hidetoshi Matsuyama
    • 2
  • Isao Yumoto
    • 1
    • 3
    • 4
  1. 1.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
  2. 2.School of Biological Science and EngineeringTokai UniversitySapporoJapan
  3. 3.Laboratory of Environmental Microbiology Graduate School of Agriculture, Hokkaido UniversitySapporoJapan
  4. 4.Bioproduction Research InstituteNational Institute of Advanced Industrial Science and TechnologyTukubaJapan

Personalised recommendations